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Executive Summary 

Throughout the mid-north coast of New South Wales, the coastal topographies are peppered with 

sweeping paddocks, seaside suburbs, and pockets of lush bush. The countryside where urban and rural 

land uses intermingle, known as peri-urban areas, have become a focal point for environmental 

research in recent decades. 

As evidenced by previous research undertaken by Southern Cross University in conjunction with 

Coffs Harbour City Council, once-pristine streams and estuaries in Coffs Harbour and nearby regions 

of New South Wales have been disturbed due increasing peri-urban development pressures, including 

intensive horticulture, rapid land use change, public infrastructure upgrades, industrial, and residential 

uses.  

Pollutants from these disturbances are transported through erosion or rainfall and often deposit in 

sediments. Natural depositional environments, such as estuaries can accumulate elevated levels of 

contaminants in sediments which may reflect the extent of upstream developments. To look for a 

relation between the extent of peri-urban activities with estuarine ecosystem health, we used dated 

sediment cores to evaluate differences in the extent of estuarine sediment pollution in six Coffs-area 

estuaries. 

We collected twenty-five, saltmarsh, and seagrass sediment cores from six estuaries across a land-use 

gradient (Boambee, Coffs, Hearnes Lake, Corindi, Wooli, and Clarence estuaries). Development in 

each catchment varied greatly, from relatively undisturbed catchments (< 5 % developed land use, 

Corindi and Wooli) to highly impacted (> 75% developed land use, Coffs, Boambee). Sediment cores 

were analysed for 210Pb radionuclides as well as metal, metalloid, and phosphorous sedimentary 

fluxes using multiple lines of evidence approach to evaluate linkages between land use and sediment 

quality. 

Overall, there was little sediment contamination within the region. Only 16 of 353 samples exceeded 

soil quality guidelines (SQG) low-range values, indicating an overall low risk of ecotoxicity in blue 

carbon sediments of this region. Contaminant flux rates were orders of magnitude lower than other 

literature reports from more developed estuaries overseas. Geoaccumulation index (a measure of 

deviation from naturally occurring background trace element concentrations) calculations also 

revealed near pristine sedimentary environments. 

Cadmium, arsenic, iron, and manganese had linear to exponential positive correlations between 

concentrations, sediment flux, geoaccumulation index and catchment development. With increasing 

agricultural or urban catchment land cover between < 5 % to 30 %, mean concentrations of arsenic, 

copper, iron, manganese, and zinc increased between 1.5 to 4.3-fold, potentially indicating a threshold 

response from blue carbon sediment quality to catchment development. Fluxes of phosphorous, 

cadmium, lead, and aluminium responded similarly, increasing 1.2 to 2.5-fold. 

Exponential increases in phosphorus flux to estuary sediments may precede eutrophication observed 

in more developed estuaries. Cadmium and zinc deposition probably co-pollute with phosphorous due 

to their presence as impurities in fertilisers used for agriculture. Overall, our multiple lines of 

evidence revealed how catchment development drives blue carbon sediment quality across a regional 

scale. 
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1. Introduction 

Seagrass, saltmarsh, and mangrove habitats (termed ‘blue carbon’ ecosystems) play an important role 

in the global marine carbon (C) cycle 1. While much of the literature has focused on C sequestration in 

blue carbon sediments 2, 3, their ability to improve estuarine water quality via contaminant removal is 

also a valuable ecosystem service 4-6. Sediments of blue carbon habitats bury anthropogenic 

contaminants, such as phosphorous, trace metals, and metalloids 7-9 along with carbon, preventing 

terrestrially derived pollutants from reaching ecologically and commercially important coastal waters 
10. Catchment urbanisation and agriculture can accelerate the accumulation of contaminants in coastal 

sediments 11. Development disturbs soils, promotes erosion, and leaching of contaminants from 

fertilisers, industrial, and natural sources 12, 13, which eventually reach estuaries 9, 14. Due to their low-

lying topography, blue carbon habitats consistently receive and accrete sediments 15 which can reflect 

the development in the adjacent terrestrial environment 16, 17.  

Several techniques have been used to resolve contaminant history in blue carbon sediments. 

Radionuclide dating, such as with 210Pb, is a valuable tool to date sediments and link sedimentary 

profiles to historical anthropogenic development 18. By comparing nutrient and trace metal/metalloid 

concentrations in sediments dated to before development, the deviation from pre-industrial sediment 

quality can be assessed 17, 19. Other metrics, like the geoaccumulation index (Igeo), are often-used to 

assess the difference between recent sediments from their previous natural (background) state 20-22. 

Multivariate statistical methods, such as principal component analysis (PCA), can then be used to 

determine the specific impacts of different land uses on sediment quality 23, 24. Combined, these 

geochronological and statistical analyses may reveal the role blue carbon sediments have in retaining 

anthropogenic contaminants across temporal, spatial, and land use gradients. 

Here, we hypothesize that increasing catchment development will accelerate sediment accumulation 

and the burial of contaminants in blue carbon habitats. We rely on 210Pb dated sediment cores from 

mangrove, saltmarsh, and seagrass habitats across a land use gradient in six estuaries. To resolve 

linkages and thresholds in catchment development resulting in a response in sediment quality, we 

measured contaminant concentrations, flux rates, and geoaccumulation indices. Our study identifies 

the extent to which anthropogenic development influences contaminant burial in blue carbon 

ecosystems. 

2. Materials and methods 

2.1 Study area 

This study was undertaken in six estuaries with similar geomorphology and climate, spanning ~140 

km along the subtropical New South Wales (NSW) north coast (Figure 1). All estuaries contained 

Avicennia marina mangrove, Sporobolus virginicus and Juncus krausii saltmarsh, and Zostera marina 

seagrass vegetation with organic-rich sandy to fine-grained sediments 25. In this region of Australia, 

strong episodic rainfall promotes the mobilisation of contaminants into estuaries 14, 26, with estuary 

sediments retaining contamination histories 9, 16. The upstream catchments contain mostly podzol, 

ferrosol, and humic clay soils. Land use varies in each catchment from peri-urban residential and 

agricultural (Boambee and Coffs), intense horticulture and large-scale livestock grazing (Hearnes and 

Clarence), to a high degree of land conservation with undisturbed National Park and native vegetation 

(Corindi and Wooli) (Figure 1). Coffs, Hearnes, Corindi, and Wooli estuaries hydraulically connect 

with an area of biodiversity and commercial importance, the state-protected Solitary Islands Marine 

Park.
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Figure 1. Location, land use, and sample sites (stars) for and mangrove, seagrass, and saltmarsh sediment cores (n = 16, 4, and 5, respectively) of 6 estuary catchments on the 

subtropical coast of Eastern Australia. Agricultural land use is green. Urban land use is brown. Catchments range from natural (Corindi, Wooli) to heavily developed 

(Boambee, Coffs).
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2.2 Sample collection and metal, metalloid, and phosphorous determination 

We collected 25 sediment cores (16 mangrove, 5 saltmarsh, and 4 seagrass) from six sites across a 

land use gradient (Figure 1) using a 50 cm long, 5 cm diameter Russian peat auger or 6.7 mm inner-

diameter PVC pipes. Peat auger cores were sectioned into 2 cm intervals upon return to the lab. Cores 

taken in the PVC pipe were extruded from the top of the tube and sectioned into 2 cm intervals in the 

field. Compaction was accounted for in core depth measurements on-site 27. Metal, metalloid (As, Cu, 

Pb, Cd, Zn, Cr, Hg, Fe, Al), and phosphorus (P) contents were measured in each sediment interval. A 

1:3 HNO3/HCl acid digest was used to extract contaminants from sediments then analysed on an 

APHA inductively coupled plasma mass spectrometer (ICP-MS). To confirm accuracy and precision 

of the instrument, sediment reference materials were digested (AGAL 12) with each sample batch. 

Instrument drift was routinely monitored by re-analysing our mid-point calibrations every 20 samples 

using internal Sc, Ge, Rh, and Ir standards. 

2.3 210Pb dating 

210Pb and 226Ra activities from core samples were counted using Canberra High Purity Germanium 

(HPGe) gamma detectors. Samples were packed into plastic petri dishes (broad energy Germanium 

detectors) or plastic vials to a height of 27 mm (well detectors). To obtain sufficient sample mass, we 

combined two 2-cm sediment intervals from Wooli, Corindi, Coffs, and Boambee cores. All samples 

were sealed with PVC electrical tape (petri dish) or epoxy resin (vials) for at least 21 days to establish 

secular equilibrium between 222Rn and its granddaughter 214Pb. 210Pb and 226Ra decay was counted 

from the 46.5 keV and 295.2, 351.9, and 609.3 keV gamma peaks, respectively. Radionuclide counts 

per minute were multiplied by a correction factor that integrates background gamma ray intensity and 

detector efficiency determined from standard (USGS Rocky Flats) calibrations. Unsupported (or 

excess) 210Pb (210Pbxs) was calculated by taking the difference of 210Pb and 226Ra activities for each 

dated sediment interval. 

The 210Pb and 226Ra equilibrium horizon was not always reached. Therefore, we calculated sediment 

ages using the constant initial concentration (CIC) model 28 which generates an average rate of 

sediment accumulation down the entire core. Sediment ages were calculated as: 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑎𝑔𝑒 = 𝑦𝑒𝑎𝑟 𝑜𝑓 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 −  
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑑𝑒𝑝𝑡ℎ

𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
 

When surface mixing was evident in sediment radionuclide profiles, these surface mixing layers were 

excluded 29. While all data from Boambee, Corindi, Wooli, Clarence, and 5 of the 6 Coffs cores are 

specific to this study, the 210Pb data from Hearnes Lake and 1 Coffs mangrove core were originally 

reported elsewhere 9, 16. 

2.4 Data analysis  

Sediment metal and metalloid contents were compared to the Australia New Zealand Environment 

and Conservation Council (ANZECC) sediment quality guidelines (SQG) to assess the extent of 

contamination 30. As ANZECC framework has no SQG for P, we used SQG from Persaud, et al. 31. 

Geoaccumulation index (Igeo) was calculated to assess the extent of pollution in the sediment cores 20. 

Geoaccumulation index was calculated for each contaminant using the equation: 

𝐼𝑔𝑒𝑜 = 𝑙𝑜𝑔2(
𝐶𝑛

1.5𝐵𝑛
) 

where Cn is the measured contaminant content in sample n and Bn is the background concentration 

from n’s sample location. The factor of 1.5 is introduced to compensate for variability in background 

concentrations due to natural lithogenic fluctuations. There are 7 classes of pollution in the 
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geoaccumulation index: Class 0 (Igeo ≤ 0, unpolluted) ranging to Class 6 (Igeo > 6 = severely polluted). 

To assess geological background values at the most local scale, contaminant contents from the bottom 

interval of each sediment core were used as background values for all calculations. 

Delineations for each catchment were obtained from government databases 32 and confirmed flow 

path tools in ESRI ArcMap v 10.5.1 on the upper limits of 1 m interval contour layers 33. Land use 

data was obtained from NSW DATABASE and modified by-hand by creating polygon shapefile 

layers from satellite imagery in ArcMap v. 10.5.1 (based on December 2018 imagery). We quantified 

land use in 3 categories: Urban- roads, communication infrastructure, commerce, manufacturing, 

industrial, mining, and residential areas (including rural residential, houses, apartments, lawns, parks); 

Agricultural- grazing, horticulture, farm infrastructure, production forestry, animal husbandry, and 

abandoned horticultural land that remained cleared and had no current urban use; and Conserved- 

undisturbed land cover with native vegetation, protected and maintained land (residential and/or 

national park, municipal nature reserve, state and/or national forest), and wetlands. Waterways were 

not considered in land use cover calculations. Due to lack of distinct separate effects between 

agriculture and urban land uses, we combined these land uses as ‘developed’ in further analyses. 

Principal components analysis (PCA) was performed in XLSTAT (v 2021.1) software to reveal 

complex correlations between multiple contaminants, land use, and estuary/catchment size. 

Contaminant concentrations and sedimentation rate data were found to be normally distributed after 

Box-Cox transformation 34 and used as explanatory variables. Land use percentages (conserved and 

developed), estuary size, and catchment to estuary ratios were entered as supplementary variables to 

observe how different land use categories correlate with contaminant concentrations in the PCA 

space. Best fit lines were calculated for land use with mean contaminant concentrations, fluxes, and 

Igeo using regression analysis. 

3. Results and Discussion 

3.1 Land use and sedimentation rates 

Land uses in each catchment ranged from highly conserved (Table 1) (Corindi and Wooli: > 85 % 

conserved land) to highly developed (Coffs, Boambee, and Clarence: 50 to 90 % agriculture and/or 

urban land use). 

Table 1. Characteristics, number of sampled sediment cores (M = mangrove core, SM = saltmarsh 

core, SG = seagrass core), and land use of six estuaries sampled in this study. Predominant impact 

was determined by the percentage and proximity of land uses in the upstream catchment.  

 

All cores displayed exponential decay of 210Pbxs (Figure 2). Sedimentation rates ranged from 0.03 to 

1.54 cm yr-1 (mean of 0.46 ± 0.10 cm yr-1), which is within or below the range of sedimentation rates 

from blue carbon systems often reported in the literature 35-38. Year to depth models (Figure 2) 

Lat. Long. Cores

Catchment 

area

Estuary 

area M SM SG Conserved Ag Urban

Total 

Developed

Estuary M, SM, SG km
2

km
2 ha ha ha % % % %

Clarence 153.33 -29.42 2, 1, 1 22,716.0 0.02 1.1E+06 521 195 1907 45.2 50.7 1.7 52.4 Ag

Wooli 153.27 -29.89 2, 1, 0 184.0 3.7 49.7 86.0 66.9 9.4 98 0.0 0.5 0.5 None

Corindi 153.23 -29.98 2, 1, 1 148.0 1.9 77.9 37.1 52.7 2.4 85.0 1.9 1.2 3.1 None

Hearnes 153.21 -30.13 3, 0, 0 6.8 0.1 68.0 6.1 3.2 0.1 24.8 24.4 8.8 33.2 Ag

Coffs 153.14 -30.30 4, 1, 1 24.5 0.5 49.0 20.1 1.4 0.2 8 28.4 62.1 90.5 Urban

Boambee 153.11 -30.35 3, 0 ,2 48.5 1.0 48.5 33.1 2.9 6 24 28.6 46.2 74.8 Urban

Pre-

dominant 

impact

Catchment 

to estuary 

ratio
Decimal °
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revealed that some bottom sediments date from beyond the range of 210Pb dating (Corindi saltmarsh, 

19 cm depth, year < 1900) to 1990s (Boambee M3L and SG6 cores).  

There was high variability in sedimentation rates across cores and habitats within each estuary as 

expected for estuarine sedimentary environments 39. Mean sedimentation rates in each estuary 

displayed no clear trend with land use percentages (R2 = 0.06). Boambee cores had mean elevated 

sedimentation rates (0.95 ± 0.22) compared to the other cores (0.36 ± 0.02), although the cause is not 

clear from our observations. Sediment delivery to estuaries is expected to vary with hydrology, 

erosion rate, sediment yield, distance from disturbance, and other parameters 40-42. 
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Figure 2. Natural-log of excess 210Pb (LN 210Pbxs) decay and year-to-depth profiles from 25 sediment 

cores. Circled ‘X’ data points in Clarence and Hearnes cores represent surface mixing layer 

observations excluded from constant initial concentration dating model calculations. M = mangrove 

core; SM = saltmarsh core; SG= seagrass core. Please note different scales of each axis for each core. 

3.2 Concentrations, fluxes, and geoaccumulation indices 

Metal, metalloid, and phosphorous concentrations seldom exceeded the default guideline SQG values 

(16 of 353 samples). No samples exceeded high-range SQG values. Despite the relatively pristine 

catchment, there was anomalous contamination of sediments with As and P in one Corindi saltmarsh 

core. Phosphorous exceeded the SQG of 600 mg kg-1 (from Persaud et al. 1993) Between 12 and 32 

cm depth in Corindi SM1 core, reaching a maximum in the 30-32 cm interval (1488 mg kg-1). Arsenic 

concentrations in this interval (27.8 mg kg-1) also exceeded the ANZECC SQG (20 mg kg-1). This was 

the only exceedance of As for all samples/estuaries. Coffs Creek mangrove M3 core had Pb 
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concentrations exceed the ANZECC SQG of 50 mg kg-1 from 4-8 cm depth (Pb concentration 62.5 

and 67.2 mg kg-1 in 4-6 and 6-8 cm depth, respectively). 

Chromium was the only element to exceeded ANZECC SQG (80 mg kg-1) in multiple estuaries. 

Chromium contents in surface (2-4 cm depth) sediments of Corindi SM2 core were 87.4 mg kg-1. 

Yamba site 3 saltmarsh and mangrove cores (SM3 and M3) had several high Cr contents. Bottom 

sediments (32-34 cm) of M3 had Cr contents of 82.2 mg kg-1. SM3 had Cr contents between 84.3 to 

113.6 mg kg-1 from 8 to 10 and 22-34 cm. 

The contamination we observed was anomalous and not widespread. Incidents of isolated 

contamination could due to discrete anthropogenic inputs (i.e. illegal dumping of wastes) or 

exceedances of SQG may be driven by geochemical processes, such as pyritization of trace metals 43 

or redox dissolution and precipitation dynamics 44, as was demonstrated in Hearnes Lake surface 

sediments 9. 

A correlation became apparent when some sediment trace element concentrations were compared to 

catchment land use. Concentrations of Cd, Zn, Pb, Cu, and Fe increased exponentially, and Mn 

increased linearly with developed land use (Figure 3). A similar relationship was observed for P, with 

the exception of the Corindi estuary, driven by the peculiarly polluted Corindi SM1 core (see previous 

paragraph). Catchment land use cover > 30% resulted in concentration increases between 1.5 to 4.25-

fold for Zn, As, Cu, Fe, and Mn. This result suggests a catchment land use threshold of ~30% 

development after which blue carbon sediment contaminant concentrations increase significantly.  

Chromium, Hg, and Al concentrations lacked any apparent relationship with development (Figure 3). 

This region lacks a major manufacturing industry and sources of Hg and Cr. The lack of relationship 

between development and Hg is probably due to relatively uniform atmospheric deposition across this 

region 45. The anomalous Cr and Hg pollution observed within and across estuaries may reflect the 

great localised variability in metal, metalloid, and nutrient deposition and diagenesis within these 

constantly evolving blue carbon sedimentary environments 46. Overall, sediment contaminant 

concentrations were lower than sediments of more developed estuaries in major metropolitan areas in 

Australia 47-49.
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Figure 3. Mean concentrations, fluxes, and geoaccumulation indices (Igeo) of metals, metalloids, and phosphorus from sediment cores compared to developed land use 

percentage from six estuaries. All habitat types (mangrove, saltmarsh, and seagrass) were averaged together here to obtain means for all sediment cores within each estuary. 

Lines of best fit (linear or exponential) are presented for elements with significant relationships with land use. Igeo values range from < 0 (no pollution), to Igeo > 4 (heavy 

pollution). Note the different scales of each axes.
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Despite no direct relations between development and sedimentation rates, the influence of 

development on contaminant flux was clearer. Abundant lithogenic metals (Fe, Al, Mn) displayed 

positive correlations between fluxes and catchment development (Figure 3), likely reflective of 

greater deposition of terrestrially-derived minerals 50. Dissolved fractions of Cd, Zn, and Pb probably 

bind with these lithogenic metals during aquatic transport 51, 52. Cd, Zn, and Pb may be introduced 

from roads, agriculture, and industrial activities 53. While P concentrations and Igeo varied across the 

land use gradient, P fluxes had an exponential increase with development (Figure 3). The negative 

trend of P Igeo may be driven by recent relatively large deviations from background P concentrations 

in more pristine sediments of less disturbed catchments. As development continues to expand in this 

region, increasing P fluxes may be antecedent to eutrophication that has persisted in more impacted 

subtropical Australian estuaries 54, 55. These fluxes of P, Cd, Zn, Pb, Cu, Hg are relatively low 

compared to areas with a higher population density or more intense urban activities where fluxes of 

these elements were orders of magnitude greater 19, 56-60. 

Overall, mean Igeo values for most elements across all estuaries were negative or near 0 (Figure 3), 

indicating minimal sediment pollution. The one exception to this trend was the severe contamination 

of Hg observed in the Clarence sediments (mean Igeo > 4, Figure 3), driven by the extremely low 

contents of Hg (< 1 ng kg-1) at the bottom of the Clarence M3 core. Indeed, the relatively low 

sedimentation rate in this core (0.19 cm yr-1, Figure 2) indicate the age of bottom sediments (35 cm 

depth) is beyond the ~150 year scope of 210Pb dating 61 and may predate the onset of intensified 

anthropogenic atmospheric Hg emissions 62. When data from this core are excluded, mean Igeo in the 

Clarence sediments indicate no Hg contamination (Igeo = -0.1 ± 0.3). 

Although negligible pollution for most elements was observed throughout the six regional estuaries, 

development was often related with the degree of contamination. There were strong positive 

correlations between Igeo and development for Cd, As, Cu, Fe, and Mn (Figure 3). Despite no 

significant pollution, the evident influence of development on increasing Igeo with respect to certain 

metals and metalloids demonstrates that this measure of contamination is especially sensitive to minor 

deviations from the geological background and may be a valuable tool to assess contamination across 

smaller (regional) scales. 

3.3 Principal component analysis 

Two principal components (PC1 and PC2) were extracted representing 36.81 and 19.45 % of the 

variability, respectively (56.26 % cumulative). Factor loadings indicate elevated sedimentation rates 

and increasing concentrations of elements associated with increased sedimentation (i.e. Al, Fe) 39, 

agrochemicals (P, Cd, Zn, As, Hg) 63, or industrial activities (Pb, Zn, Hg Cd, Hg) 64 were strongly 

positively correlated with PC1. The small angles between these metals on the PCA biplot (Figure 4) 

imply an association and similar source. Therefore, we attributed multivariate factor loadings of PC1 

to represent an anthropogenic signature from development within blue carbon sediments. 

As shown in Figure 4, the estuaries affected by urban or agricultural development had greater 

concentrations of contaminants typically associated with agriculture, urbanisation, or lithogenic origin 

indicative of sediment deposition (i.e. P, Cu, Pb, Zn, As, Cd, Hg, Fe, and Al). The observations most 

correlated with PC1 were the superficial sediments (the top ~20 cm) of the Hearnes, Coffs, Boambee, 

and select Clarence samples. Thus, the recently deposited sediments from the more developed 

estuaries were characterised by elevated mean sedimentation rates and greater concentrations of 

metals, metalloids, and phosphorous.  

While the geophysical processes governing catchment erosion and estuarine sedimentation are likely 

similar, catchment size (and thus fluvial transport distance necessary before deposition) and estuary 

morphology appear to drive sediment contaminant accumulation. The size of the catchment and 

estuary, in addition to less development, has likely preserved blue carbon sediment quality in the 
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larger catchments of Corindi and Wooli. Observations from larger catchments (Wooli, Corindi, 

Clarence) clustered away from the smaller, more developed catchments (Figure 4), and were strongly 

associated with catchment to estuary ratios (PC2) rather than the influence of development and 

associated lithogenic contaminant inputs (PC1).  

Catchment size and estuary surface area explained elevated sedimentation rates and increased 

contaminant flux in one highly cultivated estuary of the Baltic sea, while anthropogenic land use 

drove increased contamination in larger catchments 24. Despite similar estuary size and intense urban 

land uses, recent ICOLL sediments of a 7.5 km2 catchment in nearby southeast Australia were more 

enriched than the adjacent 20.8 km2 catchment 65. While these catchments were from a more 

temperate region of Australia, analogous episodic catchment erosion and deposition are assumed to 

govern sedimentation and contaminant accumulation. Our PCA results and the existing literature 

imply terrestrially derived contaminant mobilisation to blue carbon sediments may occur on a slower 

timescale in larger catchments. Comparing our results to the literature provides further evidence 

suggesting that, while our catchments and estuaries may be relatively small, these blue carbon 

sediments still function as important geophysical barriers to commercially and ecologically important 

marine ecosystems. 

While development may accelerate sediment deposition into estuaries by 5-10% 66 and increase 

estuarine contaminant loads 67, erosion and deposition processes will naturally contribute terrestrial 

materials to blue carbon sediments 68. Sediment deposition is most strongly focused at the upper 

reaches of tidal intrusion, where fluvial discharge meets the salt wedge 69. Hence, trace 

metals/metalloids from less disturbed catchments may take longer to reach the lower reaches of 

estuaries or coastal oceans.  

The PCA data from the relatively undeveloped estuaries (Corindi and Wooli) imply that these blue 

carbon sediments are influenced by natural erosion/deposition. Metals strongly associated with PC2 

(Mo, Ni, Cr) were present in low to background levels in sediments from Hearnes and Clarence 

catchment soils 70. Previous water quality investigations in the region 14 suggest these elements are 

probably present in concentrations that reflect lithogenic origin only.
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Figure 4. Principal component (PC) and explained variabilities distance biplot of observations (sediment sample intervals, coloured dots) and explanatory 

variables (contaminant concentrations, black dots) or land characteristics (blue crosses). Angles between variables represent their correlation with one 

another. Variables with angles < 90° between them are closely correlated, variables with 90° angles have no correlation, and variables with angles 

approaching 180° are negatively correlated. Vector length of variables represents their contributions to the principal components. Numbers next to 

observations represent depth of sample.
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4. Conclusions and recommendations 

Our results demonstrate the capacity of blue carbon habitats to sequester contaminants and ultimately 

preserve estuarine and nearshore ocean water quality while facing increasing anthropogenic pressures 
71. Overall, sediments were unpolluted with only 16 of 353 samples exceeding SQG default (low-

range) values and Igeo values indicating relatively pristine sediments. Contamination was not 

widespread and may be driven by discrete pollution (i.e. illegal dumping of waste) or geochemical 

processes.  

However, multiple lines of evidence (concentrations, fluxes, and Igeo) converge to the conclusion that 

catchment land use drives blue carbon sediment contaminant accumulation for Cd, As, Fe, and Mn 

(Figure 3), but not necessarily Al, Hg, Cu, Pb, or Cr. Cadmium and As are environmentally toxic 72, 

and changes in sediment redox conditions control the mobilisation of all of these elements to estuarine 

surface and groundwaters 73, 74. Our results showed that > 30 % development in our catchments led to 

more than 1.5-fold increases in Zn, As, Cu, Fe, and Mn concentrations. 

Other elements had less pronounced, but environmentally significant, relationships with land use. 

Increasing P flux with regional development (whether agricultural or urban land use) may be a 

precursor to persistent estuarine eutrophication as sediments may turn from a P sink to a P source as 

observed elsewhere 75, 76. Reduction of fertiliser use, sediment trapping and removal, and flocculation 

with inorganic particles are possible mechanisms to reduce P input into estuaries 77-79. Cu 

contamination (as revealed by increasing concentrations and Igeo) is persistent in more developed 

estuaries likely driven by fungicide use or industrial activities 16. Accelerated sediment delivery and 

subsequent infilling of these regional estuaries may reclaim tidal areas leading to the restriction of 

mangrove and saltmarsh growth, burial of seagrass, and constriction of fish habitats 80. 

Catchment geomorphology was also an influence on blue carbon sediment contamination. Our results 

suggest contaminant accumulation in sediments of large catchments and estuaries is a slower 

geophysical process than in smaller catchments with higher anthropogenic land use cover. In these 

regional coastal areas of Australia land use conflicts are still incipient compared to larger urban areas. 

Thoughtful development may preserve estuarine ecosystem health until extensive and intensive 

development takes place 81, 82. Our results suggest that dense urbanisation or agriculture should be 

avoided in small coastal catchments and established in upper catchments if blue carbon ecosystem 

health preservation is to be prioritised.  
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