

Coffs Harbour City Council

Coramba Groundwater Monitoring - April 2017 Groundwater Monitoring Report

August 2017

Executive summary

GHD Pty Ltd (GHD) was engaged by Coffs Harbour City Council (CHCC) to complete a Groundwater Monitoring Event (GME) in April 2017 as part of the implementation of the Groundwater Management Plan (GMP) (GHD, 2017a) for the future management and monitoring of hydrocarbon impacted groundwater in Coramba, NSW (the site).

Groundwater sampling of 11 existing groundwater monitoring wells was undertaken and river water samples were collected from two locations in the Orara River.

With reference to the objectives in Section 1.2 and in accordance with the limitations set out in Section 9 the following summary and conclusions are made.

A comparison of the current data to the previous monitoring rounds shows an overall decrease in benzene, toluene, xylene and naphthalene (BTEXN) and total recoverable hydrocarbon (TRH) concentrations in all wells except MW14, which is near the top (source) end of the groundwater contamination plume. A comparison of the current results to the 2015 results was undertaken, with the following points of interest noted:

- In MW2 and MW20, TRH and BTEXN concentrations decreased to below the laboratory limit of reporting (LOR) compared to 2015 results, which has resulted in benzene concentrations dropping below the adopted assessment criteria.
- In MW18, benzene concentrations have reduced by an order of magnitude, but remain above the Australian Drinking Water Guidelines (ADWG) and adopted recreational criteria. Concentrations of all other contaminants of potential concern (COPC) have also decreased and remain below the adopted assessment criteria.
- In MW4B and MW11, benzene concentrations have reduced significantly (over an order of magnitude in MW4B, and by a factor of 6 in MW11), but remain above the ADWG and recreational criteria. TRH concentrations have decreased to below the adopted Netherlands (2000) criteria.
- MW9, MW10 and MW15 TRH and BTEX concentrations have remained below the LOR.
- MW6 and MW12 benzene concentrations have reduced by about a factor of 4, but remain above the ADWG and recreational criteria. Most other COPC concentrations also reduced.
- Benzene concentrations only reduced slightly in MW14, and remain above the ADWG and recreational criteria, the adopted freshwater groundwater investigation levels (GIL) and above the adopted health screening levels (HSL) for vapour intrusion.
- There have been some minor increases in toluene, ethylbenzene and/or xylene concentrations in MW6, MW11, MW12 and MW14, with xylene (m&p) in MW6 now above NEPM 2013 GILs for freshwater. In MW12, xylene (m&p) concentrations have increased to above NEPM 2013 GILs for freshwater, however xylene (o) and total xylene concentrations have decreased to below the adopted assessment criteria. All other increases are considered insignificant and have not resulted in additional exceedances of the adopted assessment criteria.
- Overall contaminant concentrations appear to have decreased in all wells, except MW14, where, due to the increase in xylene concentrations, the overall contamination status is considered stable (i.e. no significant changes from the 2015 monitoring round).

- There is strong evidence to indicate that natural attenuation of hydrocarbons is occurring at the site. Given that the contaminant concentrations at the site have decreased since 2015, it appears that natural attenuation has been occurring at the site since the air sparge unit was turned off in 2015, particularly in the lower areas of the plume. Although geochemical parameters indicate natural attenuation processes are occurring at MW14, there has not been a significant decrease in hydrocarbon concentrations at this location since 2015, suggesting there is a significant residual source of contamination in the upper area of the plume.
- Based on the results, it appears that MW9 is a suitable background location and can replace MW2 for natural attenuation monitoring in the future.
- None of the groundwater trigger levels for further assessment have been exceeded and groundwater monitoring in the future should occur in accordance with the GMP.
- No odours were noted or reported that trigger implementation of contingency measures outlined in the Odour Management Plan (GHD 2017b).
- Contaminant concentrations in river water samples were below the LOR at both locations, which is consistent with previous monitoring rounds. This indicates that the impacted groundwater is not causing significant impacts in the Orara River. Risks to ecological and recreational receptors in the river, from the hydrocarbon plume are considered to be low.
- Potentially complete Source pathway receptor linkages remain present at the site for volatilisation to indoor air, direct contact with groundwater and lateral migration to ecological and recreational receptors in the riparian zone of the Orara River.

Table of contents

1.	Introd	duction1	
	1.1	Background1	
	1.2	Objectives2	
	1.3	Scope of work	
2.	Site i	nformation3	
	2.1	Location details	
	2.2	Environmental setting	
	2.3	Surrounding land use4	
	2.4	Surrounding sensitive receptors4	
3.	Grou	ndwater Monitoring Event5	
	3.1	Data quality objectives	
	3.2	Methodology7	
	3.3	Sampling and analysis program8	
	3.4	Quality assurance/quality control9	
4.	Asse	ssment criteria11	
	4.1	Human health11	
	4.2	Ecological12	
	4.3	Groundwater trigger levels for further assessment13	
5.	Resu	lts15	
	5.1	Field observations15	
	5.2	Analytical results	
6.	Discu	ussion	
	6.1	Contamination status19	
	6.2	Natural attenuation20	
	6.3	Groundwater trigger levels for further assessment24	
7.	Conc	eptual site model25	
8.	3. Conclusions		
9.	Limitations		
10.	References		

Table index

Table 2-1	Site identification	3
Table 2-2	Summary of site conditions	4
Table 2-3	Surrounding land use	4
Table 3-1	Data quality objectives	5
Table 3-2	Sampling and analysis program	9
Table 4-1	Groundwater health screening and investigation levels referenced	12
Table 4-2	Ecological groundwater investigation levels referenced	13
Table 4-3	Groundwater trigger levels for further assessment	13
Table 5-1	RPD exceedances	17
Table 6-1	Contaminant trends from 2015 to 2017	20
Table 7-1	Conceptual site model	26

Figure index

Figure 6-1	Benzene trends since groundwater monitoring commenced	22
Figure 6-2	Benzene concentrations since 2015	22
Figure 6-3	Natural Attenuation Indicators vs COPC Concentrations – April 2017	23
Figure 7-1	Conceptual Site Model	27

Appendices

- Appendix A Figures
- Appendix B Photographs
- Appendix C Summary Results Tables
- Appendix D Laboratory Documents
- Appendix E Field Sheets

1. Introduction

GHD Pty Ltd (GHD) was engaged by Coffs Harbour City Council (CHCC) to complete a Groundwater Monitoring Event (GME) in April 2017 as part of the implementation of the Groundwater Management Plan (GMP) (GHD, 2017a) for the future management and monitoring of hydrocarbon impacted groundwater in Coramba, NSW (the site). The location of the site is shown on Figure 1, Appendix A.

1.1 Background

In 2002, hydrocarbon contaminated groundwater was discovered seeping into a backwater adjacent to the Orara River, Coramba, NSW. The source of the hydrocarbon contaminated groundwater was identified as an unleaded petrol leak from an underground storage tank (UST) at a nearby service station, located approximately 150 m up gradient of the Orara River. The leaking tank and contaminated soil were removed and managed in accordance with guidelines and legislative requirements that were relevant at the time.

A total of 24 groundwater wells (including two (MW1 and MW19) which could not be located in preparation of the GMP and do not form part of the monitoring program) comprise the existing monitoring network installed down gradient of the Service Station to the Orara River to assess the extent of the hydrocarbon plume. Figure 2, Appendix A shows the location of all groundwater monitoring wells at the site.

Further management of the contamination at the site was undertaken in 2011 with the installation of a soil vapour extraction system and air sparging treatment system. This infrastructure operated sporadically from 2011 and then continuously for over 18 months from July 2013 to reduce the hydrocarbon impact.

The air sparging remediation system was turned off in March 2015, with groundwater monitoring events undertaken just before it was turned off and 3 months after it had been turned off. Results of the 2015 (WSP, 2015) monitoring indicated that the overall groundwater contamination appears to be decreasing or stabilising, however select wells still contained benzene, toluene, ethylbenzene, xylene (BTEX) and total recoverable hydrocarbon (TRH) concentrations above the adopted groundwater assessment criteria. Recent monitoring indicates that fluctuating contaminant levels may be due to climatic events such as high rainfall.

No groundwater monitoring events have been undertaken since June 2015, up to the time of this GME.

The Service Station is reportedly being monitored in accordance with the requirements of the Protection of the Environment (Underground Petroleum Storage Systems) Regulation 2014 and associated guidelines.

A GMP (GHD 2017a) was developed to outline future management and monitoring of the hydrocarbon impacted groundwater at the site, including:

- Groundwater sampling of existing groundwater monitoring wells and river water sampling from the Orara River.
- Odour management Identification of odour management measures in the event that odour complaints or issues are identified at the site.
- Rebound assessment Determining the trigger points to recommence the use of the existing air sparge system.

• Exit strategy – Developing an exit strategy for the monitoring program based on a stabilised or decreasing trend in hydrocarbon impact at the site.

1.2 **Objectives**

The objective of the GME was to monitor groundwater and river water quality at the site in accordance with the GMP (GHD 2017a) to assess whether:

- Groundwater in the area has been remediated to sufficient extent that it does not pose any unacceptable risks for ongoing commercial, residential and recreational land use or to recreational users or ecosystems in the Orara River.
- Contaminant concentrations in groundwater and surface water are stable or declining.
- Natural attenuation processes are further reducing the contamination to ultimately restore groundwater quality to its natural background condition.
- Contaminant concentrations or trends trigger recommencement of the operation of the air sparge system.

1.3 Scope of work

In order to meet this objective, the following scope of work was completed in April 2017:

- Groundwater sampling of 11 existing groundwater monitoring wells.
- River water sampling from two locations in the Orara River.
- Laboratory analysis of samples for contaminants of potential concern (COPC) including:
 - TRH and BTEXN
 - Monitored natural attenuation parameters
- Preparation of this GME report.

2. Site information

2.1 Location details

The site is located in Coramba, approximately 12 km north-west of Coffs Harbour on the Mid North Coast of NSW as shown on Figure 1 Appendix A. The service station where the leak occurred is located at 33 Gale Street on Lot 2, DP 264343 and the river bank where the hydrocarbon leak was first observed is located on Lot 122 DP 876790 (Council owned reserve at the end of Martin Street) as shown on Figure 2, Appendix A. The contaminated groundwater extends beneath multiple properties between these two points, including Martin St Road Reserve. The locations of the 24 monitoring wells are presented in Figure 2, Appendix A. The air sparge treatment system is located on Martin Street on Lot 121 DP 876790. The 'site' refers to the area impacted or formerly impacted by the hydrocarbon contamination from the service station to the Orara River, including all 24 previously installed monitoring wells and the air sparge unit.

The site location and further site details are provided in Table 2-1.

Local Government Area	Coffs Harbour City Council (Council)	
Current Land Use	Residential and Recreational along the Orara River	
Proposed future land use	Residential and Recreational	
Local Land Use Zoning based on Coffs Harbour Local Environmental Plan (LEP) 2013	Zone R2 – Low Density Residential	
Objectives of Zone	 To provide for the housing needs of the community within a low density residential environment. To enable other land uses that provide facilities or services to meet the day to day needs of residents. 	

Table 2-1 Site identification

2.2 Environmental setting

Table 2-2 provides an overview of the environmental setting of the site obtained from a desktop review of publically available information, including previous site reports and the following information sources:

- 1:250,000 scale Regional Geology Sheet for the Coffs Harbour area
- NSW Land & Property Information, SIX Maps (<u>http://maps.six.nsw.gov.au/</u>), accessed 14 October 2016
- Department of Primary Industries Office of Water database
 (<u>http://allwaterdata.water.nsw.gov.au/water.stm</u>), accessed 14 October 2016

Table 2-2 Summary of site conditions

Section	Summary
Geology and soils	The site is underlain primarily by the Carboniferous aged Coramba beds, comprising siliceous argillite. Granodiorite forms the bedrock in a small portion of the northern part of the site.
	Soils at the site consist of alluvial sediments comprising gravelly river sediments close to the Orara River and sandy silty sediments further up the bank.
Topography	The site slopes down to the Orara River with an elevation ranging from approximately 80 metres Australia Height Datum (AHD) at the Orara River to 120 m AHD at Gale Street, where the service station is located.
Hydrology	The nearest surface water receptor (ecological) is the Orara River, which forms the north eastern boundary of the investigations to date. The Orara River is a tributary of the Clarence River.
	Runoff from the site would flow in a north westerly direction towards the Orara River.
Hydrogeology	There are 24 groundwater monitoring wells located at the site, for the purposes of assessing the impact of the contaminated groundwater, which is the focus of this report.
	An off-site well is located approximately 300 m north west of the site and is used for domestic purposes.

2.3 Surrounding land use

Current land uses immediately surrounding the site are detailed in Table 2-3, listed in order of proximity to the site and shown in Figure 2, Appendix A.

Table	2-3	Surrounding	land	use
Iabic	2-3	Surrounding	land	use

Direction	Land use
North	The Orara River is located immediately north of the site, beyond which a railway and rural residential properties are located.
East	Martin Street is located on the eastern portion of the site, followed by residential properties and the Orara River.
South	Residential properties off Gale Street are located to the south of the site, beyond which rural land is located.
West	Residential properties and commercial businesses are located to the west of the site.

2.4 Surrounding sensitive receptors

A CSM is provided in Section 7. The following potentially sensitive receptors were identified in the vicinity of the site:

- Ecological receptors and recreational users of the Orara River
- Groundwater beneath the Site and users of groundwater in the surrounding area
- Residences (on-site and off-site)
- Workers (on-site and off-site), including those working on nearby underground services and utilities and intrusive maintenance workers
- Visitors to the site

Groundwater monitoring event

3.1 Data quality objectives

The Data Quality Objective (DQO) process was applied to the investigation as described below, to ensure that data collection activities were appropriate and achieved the stated objectives.

A process for establishing data quality objectives for an investigation site has been defined by the *National Environment Protection (Assessment of Site Contamination) Measure 1999*, as amended by the *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)*, herein referred to as the NEPM and the Guidelines for the NSW Site Auditor System (NSW DEC 2006).

The DQO process involves seven steps as described and addressed in Table 3-1.

Table 3-1 Data quality objectives

Step 1: State the problem

The 'problem' as it stands is that residual groundwater contamination associated with a fuel leak from a UST exceeds appropriate guidelines in a number of wells across the site, and has the potential to adversely impact upon human and environmental receptors.

Step 2: Identify the decision

The primary decisions are as follows:

- Has groundwater in the area been remediated to sufficient extent that it does not pose any unacceptable risks for ongoing commercial, residential and recreational land use or to recreational users or ecosystems in the Orara River?
- Are contaminant concentrations in groundwater and surface water stable or declining?
- Are natural attenuation processes further reducing the contamination to ultimately restore groundwater quality to its natural background condition?
- Do contaminant concentrations or trends trigger recommencement of the operation of the air sparge system?

Step 3: Identify inputs to the decision

Data input to the decision making process included:

- Information gained via the review of previous investigations.
- Quantitative data gained via groundwater sampling and analytical works (Section 5).
- Adopted assessment criteria (Section 3.4).

The sampling program was designed to provide sufficient information to allow a sound scientific and statistical evaluation of the questions set out in Step 2. This was to be achieved by:

- Collection of groundwater and surface water samples to provide sufficient site coverage and statistically valid data sets upon which to base subsequent decisions.
- Comparing the analytical data to applicable guidelines and comparing the results against previous monitoring rounds.

Step 4: Define the study boundaries

With respect to physical boundaries, the lateral boundaries of the investigation area are defined as the 'site' as discussed in Section 2.1 and shown on Figures 1 and 2, Appendix A.

The vertical boundary will be the depth of existing groundwater monitoring wells.

Step 5: Develop a decision rule

Field and laboratory quality assurance/quality control (QA/QC) procedures were utilised throughout the sampling programme and all sampling work was carried out in accordance with appropriate Standard Field Operating Procedures, which are based on relevant guidelines and current industry practices. QA/QC results were compared to nominal acceptance limits (as outlined in Section 3.4) and project analytical data was compared to relevant guidelines made or endorsed by the NSW EPA (as outlined in Section 3.4).

Step 6: Specify limits on decision errors

Two types of decision errors were possible:

- The groundwater is considered 'uncontaminated' when in fact it is contaminated.
- The groundwater is considered 'contaminated' when in fact it is not contaminated.

The implications of the first decision error are considered less acceptable than the second, as the first error could involve unacceptable risk to health and/or the environment, and potentially future costs including possible litigation if the site is found to be unsuitable in the future. The risks associated with the second error are primarily limited to unwarranted remediation costs.

The limits on the first decision error are therefore addressed by use of conservative investigation criteria (which incorporate a factor of safety) and by further assessing any data exceeding these criteria.

The risk of the second decision error occurring was minimised by reducing the potential for unrepresentative data which could arise from the following causes:

- Sampling errors which occur when the sampling program does not adequately detect the variability of a contaminant from point to point across the site, (i.e. the samples collected are not representative of the site conditions).
- Measurement errors which occur during sample collection, handling preparation, analysis and data reduction.

To minimise the potential for unrepresentative data, Data Quality Indicators (DQIs) were evaluated including completeness, comparability, representativeness, precision and accuracy. These are discussed in Section 3.4.

Step 7: Optimise the design for obtaining data

The sampling program (Section 3.3) was designed to provide sufficient information to allow a sound scientific and statistical evaluation of the questions set out in Step 2, taking into account data from previous investigations undertaken at the site. Works were completed in accordance with NSW EPA guidelines and accepted industry standards. To optimise the design of the investigations a sampling and analytical program was prepared to specifically target information required to meet the project objectives.

3.2 Methodology

3.2.1 Groundwater elevation gauging

Immediately upon opening each monitoring well, a photo-ionisation detector (PID) was used to assess for the presence of volatile organic compounds (VOC) in the air contained within the well.

The depth of the standing water level was measured at each of the monitoring wells using an interface probe, along with the total well depth and presence (including thickness) or absence of phase separated hydrocarbons (PSH). All measurements were recorded from the top of casing (TOC).

3.2.2 Groundwater sampling

Groundwater samples were collected using a low flow peristaltic pump with the exception of one monitoring well (MW14) which was sampled with a disposal bailer due to limitations of the suction capacity of the peristaltic pump, when drawing water from a greater depth (than the other wells) in that location. Using a bailer for the sampling of MW14 represents a deviation from the proposed methodology presented in the GMP (GHD 2017a) which states that 'groundwater samples are to be collected using a low flow micropurge sampler'. Previous sampling rounds at MW14 were also completed with a micro-purge pump under low flow conditions. In general, the use of low-flow submersible pumps or positive-displacement pumps capable of controlling flow rates and minimising purging requirements are the preferred methods of groundwater sampling for site characterisation purposes. Peristaltic and micropurge pumps are considered to be comparable in this regard. Purging and sampling methods using bailers or high speed pumps are not recommended due to the difficulty of obtaining a representative groundwater sample. These methods may result in degassing of samples and can also introduce high levels of turbidity (NEPC 2013). Given the relatively high concentrations of COPC in MW14 (as discussed in Section 5.2), it is considered the data gained from the two methods (low flow and bailer) would be comparable enough to meet the objectives of this assessment; however, any future sampling rounds under the GMP are to be completed using the same (micropurge) methods prescribed in the GMP in order to obtain repeatable and comparable results.

Groundwater field parameters (pH, electrical conductivity, temperature, dissolved oxygen and redox) were measured continuously during purging using a flow cell attached to the pump to ensure representative samples were collected. The intake of the pump was set at the approximate mid-level of the screen. Samples were collected once field parameters had stabilised (within 10% of each other). Visual or olfactory observations were recorded, in particular the absence or presence of a hydrocarbon sheen or odour. River samples were collected with a clean unpreserved container and extension pole.

Collected groundwater and river water samples were immediately transferred to sample containers of appropriate composition, which are pre-treated in a manner appropriate for the laboratory analysis. Sample bottles were filled directly from the pump or dedicated bailer (for MW14 only) with a minimal amount of air contact and vials for volatile organic analysis were filled to be free from headspace. All sample containers were clearly labelled with a sample number, sample location and sample date with waterproof indelible ink. The sample containers were transferred to a cooler chilled with ice for sample preservation prior to and during shipment to the testing laboratory. A chain-of-custody form was completed, and forwarded with the samples to the testing laboratory within holding times appropriate to the analysis required. Dedicated sampling equipment (i.e. tubing, bailers, filters etc.) was disposed of after each well was sampled, with other sampling equipment (i.e. the peristaltic pump head) decontaminated using a mixture of Decon Neutracon solution and potable water and then rinsed with potable tap water between each well location.

All samples were analysed at a National Association of Testing Authorities (NATA) registered laboratory (Eurofins MGT).

3.3 Sampling and analysis program

Based on the groundwater information available to date, the remediation goals and the objective of assessing whether groundwater treatment should continue, monitoring locations were selected as outlined and justified in the Coramba GMP (GHD, 2017). The sampling and analysis program (SAQP) used during this investigation was consistent with the GMP with the exception of the collection of inter-laboratory duplicates which were omitted by the field staff. The overall frequency of duplicate samples did; however meet the requirements of the GMP. The SAQP is summarised in Table 3-2

Table 3-2	Sampling	and anal	ysis	program
-----------	----------	----------	------	---------

Location	Analytes	Basis of Monitoring
MW14	F/T/M	Source zone monitoring well.
MW18	F/T	Mid zone, edge of plume. Consider sampling MW22 and MW24 as a contingency if MW18 shows a consistent increase.
MW6	F/T/M	Mid zone, plume centre.
MW4B	F/T	Mid zone, plume centre.
MW12	F/T	Lower zone bedrock well, fluctuating and still fairly high concentrations.
MW15	F/T	Close proximity to treatment system and still fluctuating.
MW2	F/T/M	Dry June 2015. One round to confirm decrease and compare MNA with MW9, reinstate if MW15 increases.
MW9	F/T/M	New MNA well – best 'background' location available.
MW11	F/T/M	Discharge zone alluvial well with highest impact, continued MNA monitoring point.
MW20	F/T	Proximity to treatment system. Do one last round in wet weather, cease if concentrations still low (discharge zone covered by MW10 and MW11). Reinstate if there is an increase in upgradient wells (MW15, MW4B).
MW10	F/T	Discharge zone alluvial well.
River 1	F/T	Site A – upstream of footbridge – up gradient so if there is impact, it can be determined whether it was due to plume.
River 2	F/T	Site B – outside bund (sample site in backwater of river adjacent to problem area) – point of most likely impact to receptor(s). (Due diligence point).
Intra lab duplicates	т	The SAQP in the GMP calls for analysis of 5% intra lab duplicates and 5% inter lab duplicates to be analysed for the
Inter lab duplicates	Т	same analytes as their primary sample. During this round GHD did not collect any inter lab duplicates but collected intra lab duplicates at a rate of 15%.
Rinsates	Т	One per day of sampling.
Trip blanks	Т	One per monitoring program.
Trip spikes	Т	One per monitoring program.

F is field parameters (SWL, well depth, PSH thickness, temp, DO, Redox, pH, EC) T is TRH/BTEXN

M is the MNA suite (Natural attenuation indicators - nitrate, sulfate, ferrous iron, methane; major anions and cations, with hardness and alkalinity, ion balance; and manganese)

3.4 Quality assurance/quality control

3.4.1 Overview

QA/QC practices were applied to all stages of data gathering and subsequent sample handling procedures and were designed to provide control over both field and laboratory operations. Additionally, the analytical laboratory completed their own internal QA procedures, as required by NATA registration, during the analysis of samples.

Results of the QA/QC program were used to determine if the data met the objectives of the study and are acceptable for the intended use.

3.4.2 QA/QC procedures

All fieldwork was conducted in general accordance with GHD's Standard Field Operating Procedure to ensure that all environmental samples were collected by a set of uniform and systematic methods as required by the QA system. The Data Quality Objectives (DQI) for sampling techniques and laboratory analysis of collected samples were based on those listed in Appendix V of the NSW EPA Auditor Guidelines (DEC 2006). Step 5 and Step 6 of the DQOs were assessed by reference to data quality indicators as follows:

- **Data representativeness** expresses the degree which sample data accurately and precisely represents a characteristic of a population or an environmental condition. Representativeness is achieved by collecting samples in an appropriate pattern across the site, and by using an adequate number of sample locations to characterise the site. Consistent and repeatable sampling techniques and methods are utilised throughout the sampling.
- **Completeness** defined as the percentage of measurements made which are judged to be valid measurements. The completeness goal is set at there being sufficient valid data generated during the study. If there is insufficient valid data, then additional data are required to be collected.
- **Comparability** is a qualitative parameter expressing the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples and ensuring analysing laboratories use consistent analysis techniques and reporting methods.
- **Precision** measures the reproducibility of measurements under a given set of conditions. The precision of the data is assessed by calculating the Relative Percent Difference (RPD) between duplicate sample pairs.

$$\mathsf{RPD}(\%) = \frac{\left|\mathsf{C}_{\mathsf{O}} - \mathsf{C}_{\mathsf{d}}\right|}{\mathsf{C}_{\mathsf{O}} + \mathsf{C}_{\mathsf{d}}} \times 200$$

 Where
 Co =
 Analyte concentration of the original sample

 Cd =
 Analyte concentration of the duplicate sample

GHD adopted the nominal acceptance criteria of 50% RPD; however, it is noted that this will not always be achieved, particularly in heterogeneous soil or fill materials, or at low analyte concentrations (concentrations less than 10 times the LOR will not be assessed against the acceptance criteria).

- Accuracy measures the bias in a measurement system. Accuracy can be undermined by such factors as field contamination of samples, poor preservation of samples, poor sample preparation techniques and poor selection of analysis techniques by the analysing laboratory. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes, laboratory blanks and analyses against reference standards. The nominal "acceptance limits" on laboratory control samples are defined as follows:
 - Laboratory spikes recovery 70-130 % for metals/inorganics, 60-140 % for organics.
 - Laboratory duplicates RPD <30 % for metals/inorganics, <50 % for organics.
 - Laboratory blanks <practical quantitation limit.

The testing laboratory conduct an assessment of the laboratory QC program, internally; however, the results were also independently reviewed and assessed by GHD.

The laboratory quality control procedures included analysis of method blanks, laboratory duplicate samples, laboratory control samples, matrix spike samples and surrogates.

4. Assessment criteria

The overarching reference to be used in this assessment is the NEPM (NEPC, 2013), and the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC 2000). The NEPM and the ANZECC guidelines contain investigation and screening levels suitable for the assessment of CoPC in groundwater and surface water at the site.

For the purpose of the ongoing monitoring and assessment, groundwater and surface water analytical results will be compared against investigation levels appropriate for a residential and a recreational land use setting as the impacted groundwater is located beneath residential properties and in a public reserve.

NEPM Health Screening Limits (HSL) are based on specific assumptions, and similarly aquatic toxicity for TRH would be based on the constituents. Therefore while TRH criteria have been nominated for initial comparative purposes in this assessment, if they are exceeded, analysis of constituent parameters may be required, and specific assessment against criteria for those parameters. Although restrictions have been placed on the use of groundwater for domestic purposes at the site, potential contact may result from groundwater used in sprinklers, wading pools etc. The criteria may be used to assess whether restrictions may be lifted at the completion of the monitoring program.

Groundwater investigation levels (GILs) and the corresponding ANZECC (2000) trigger values for freshwater were deemed applicable due to the Orara River adjoining the site.

Criteria from the *Ministry of Housing (Netherlands), Spatial Planning and the Environment* (2000) was used for the assessment of TRH C10-C36 given the lack of other criteria.

The Orara River is used for recreation including swimming. The Australian Drinking Water Guidelines (NHMRC 2011, version 3.1, as updated March 2015) refers to NHMRC (2008) *Guidelines for Managing Risks in Recreational Water*. These guidelines were developed to protect human health during recreational activities such as swimming and boating, and to preserve the aesthetic appeal of water bodies. The criteria in NHMRC (2008) are based on a simple screening approach in which a substance occurring in recreational water at a concentration of 10 times that stipulated in the drinking water guidelines may merit further consideration.

The groundwater assessment criteria adopted for this project are summarised in Section 4.1, 4.2 and presented in the results tables in Appendix C.

4.1 Human health

The NEPM (and related CRC CARE documents referenced in the NEPM) includes groundwater HSLs for residential and recreational landuse and GILs for drinking water as presented in Table 4-1.

Title	Level	Abbr.	Reference	Use
Groundwater HSLs for vapour intrusion	Residential Recreational/ open space	HSL A/B HSL C	NEPM Schedule B1 Table 1A(4)	Assessment of petroleum hydrocarbon concentrations in on-site groundwater. Sand criteria used due to on-site soil conditions. Conservative depth of 2 m to <4 m used.
Groundwater GILs (Groundwater investigation levels)	Drinking water	Drinking water GIL	NEPM Schedule B1 Table 1C	For comparison purpose only, in the case of groundwater extraction for potential potable use. Assessment of petroleum hydrocarbons in groundwater.
NHMRC Australian Drinking Water Guidelines	Drinking Water	NHMRC Drinking Water	ADWG 2011 Table 10.5	For comparison purpose only, in the case of groundwater extraction for potential potable use. Assessment of petroleum hydrocarbons in groundwater
NHMRC Australian Drinking Water Guidelines	Recreational Water	NHMRC Recreational Water		Assessment of BTEX in regard to recreational use of the Orara River.
Ministry of Housing (Netherlands), Spatial Planning and the Environment (2000)				Initial screening/comparative assessment of TRH C10- C36 given the lack of other criteria

Table 4-1 Groundwater health screening and investigation levels referenced

4.2 Ecological

GILs are provided in the NEPM for assessing ecological risk from direct contact with groundwater. The nearest receiving water ecosystem is the Orara River which forms the northern boundary of the site. The Orara River is considered to be a slightly-moderately disturbed system (to which the GILs apply) and is expected to be fresh water. The ANZECC guidelines provide 95% protection levels for freshwater species.

The NEPM and ANZECC (2000) include GILs and 95% freshwater guidelines for ecological protection as referenced in Table 4-2.

Title	Level	Abbr.	Reference	Use
Groundwater GILs (Groundwater investigation levels)	Fresh Waters	Fresh Waters GIL	NEPM Schedule B1 Table 1C	Assessment of petroleum hydrocarbons in groundwater, for potential receiving environment of the Orara River.
ANZECC 95% protection levels for freshwater	Fresh Waters	95% FW	ANZECC Table 3.4.1, Table 8.3.14 (Low reliability guidelines for BTEX)	Assessment of petroleum hydrocarbons in groundwater, for potential receiving environment of the Orara River.

Table 4-2 Ecological groundwater investigation levels referenced

4.3 Groundwater trigger levels for further assessment

This GME forms part of a larger two-year monitoring program as outlined in the GMP (which may be revised as ongoing monitoring proceeds).

In the GMP, trigger values were set for notification, further monitoring and assessment and revision of the GMP, which may include recommencement of groundwater treatment. The trigger values and rationale are presented in Table 4-3.

Review of the GMP may include consideration and review of the nature and frequency of site monitoring and locations, and shall be undertaken on completion of each monitoring round to ensure that the monitoring program remains representative. The review is to be undertaken by CHCC (or its technical representative) in conjunction with the NSW Environment Protection Authority (EPA). At this time, a period shall be set for further monitoring, review or additional investigations if required, or agreement that no further monitoring is necessary. The review should involve consultation with relevant interested parties, such as adjoining landowners, CHCC and other government agencies as required.

Groundwater /surface water parameter	Trigger for further monitoring	Management Actions	Trigger for revision of the GMP
TRH (C6- C9), BTEX, PAH, phenol	 >50% increase from previous event, if above assessment criteria. 20% increase over two annual sampling rounds, if above assessment criteria. 	Notification to CHCC and EPA. Re-sampling (with CHCC approval) and assessment. Assess if plume is expanding overall or in localised areas.	If re-sampling confirms rising concentrations.
PSH	Appearance of PSH in well (greater than 2 mm thick). PSH noted at discharge point near Orara River.	Notification to CHCC and EPA. Re-sampling (with CHCC approval) and assessment. Removal of PSH (bailer and other extraction as practical given recoverability). Council and EPA Notification required.	If PSH is identified in 2 consecutive monitoring events within the same well.

Table 4-3 Groundwater trigger levels for further assessment

Groundwater /surface water parameter	Trigger for further monitoring	Management Actions	Trigger for revision of the GMP
MNA	Evidence that biodegradation has ceased or is occurring at a notably reduced rate.	Notification to CHCC and EPA. Re-sampling (with CHCC approval) and assessment.	If biodegradation has ceased or is occurring at a notably reduced rate in two consecutive monitoring events.
Surface water (river) sample parameters	Exceedance of assessment criteria.	Notification to CHCC and EPA and additional monitoring, reassessment/ resampling and investigation.	If re-sampling confirms rising concentrations.
Non- sampling parameters	NA	NA	Changes to consent or licence conditions. Any significant incident at the site.

5. Results

5.1 Field observations

Photographs taken during the sampling are presented in Appendix B. Field observations are presented in gauging sheets in Appendix E and in Table 2, Appendix C.

Standing water levels (SWL) during sampling were recorded from 12.54 m below top of casing (m bTOC) at MW14 (close to the BP service station) to 0.76 m bTOC at MW10 (close to the Orara River). Standing water levels recorded during this sampling round were 0.4 to 1.7 m higher than the average SWL recorded for each well. SWLs were also higher in this sampling round than recorded during the 2015 sampling for all monitoring wells with the exception of MW14, where an anomalously high SWL was recorded in 2015. The elevated SWLs reflects high rainfall received in during period preceding the sampling (920 mm recorded during January to March as opposed to an average of 640 mm and 650 mm received during March as opposed to an average of 230 mm).

A moderate odour and light sheen was noted in MW14 and a low odour was noted in MW12. These results corresponded with elevated PID readings from the monitoring well headspace of 314 ppm in MW14 and 376 ppm in MW12.

No PSH was observed in any of the wells sampled by GHD during this GME.

No odours were noted onsite during sampling (excluding those in the water sampled from MW12 and MW14) and no odour complaints were reported to GHD. Accordingly, no contingency measures outlined in the Odour Management Plan (GHD 2017b) require implementation.

5.2 Analytical results

5.2.1 Groundwater field parameters

Groundwater field parameters are presented in gauging sheets in Appendix E and in Table 2, Appendix C. Key observations of groundwater field parameters following purging are summarised as follows:

- pH ranged from 4.7 (MW2) to 6.5 (MW11)
- Electrical Conductivity (EC) ranged from 88 μS/cm (MW10) to 335 μS/cm (MW11)
- Dissolved oxygen ranged from 0.5 ppm (MW11) to 3.7 ppm (MW15)
- Redox ranged from -209 mV (MW11) to 341 mV (MW2)

5.2.2 Groundwater COPC

Groundwater analytical results for the COPC are provided in Appendix D and summarised in Table 1, Appendix C. A summary of the results include:

• The groundwater samples analysed from MW2, MW9, MW10, MW15 and MW20 reported concentrations of COPC below the adopted assessment criteria for all analytes, and below the laboratory reporting limit (LOR) for all COPC.

- Samples from MW4B, MW6 (and DUP2), MW11, MW12 (and DUP1) and MW18 reported benzene concentrations above drinking water guidelines (NEPM 2013, NHMRC 2011) and recreational guidelines (NHMRC 2008). In MW6 (and/or DUP2) and MW12 (and/or DUP1), ethylbenzene, xylene (m&p) and naphthalene concentrations also exceeded ANZECC 2000 guidelines for 95% protection of freshwater species, TRH F1 (C₆-C₉ minus BTEX) concentrations exceeded NEPM 2013 HSL A/B and TRH C₁₀-C₃₆ concentrations exceeded the Netherlands (2000) criteria.
- Samples analysed from MW14 reported elevated TRH and BTEXN concentrations with exceedances above the adopted assessment criteria as follows:
 - Benzene, toluene, ethylbenzene and xylene total concentrations exceeded drinking water guidelines (NEPM 2013, NHMRC 2011) and freshwater species protection guidelines (ANZECC 2000 and NEPM 2013 GILs).
 - Benzene concentrations also exceeded recreational guidelines (NHMRC 2008) and human health guidelines (NEPM 2013 HSL A/B).
 - Total xylene concentrations also exceeded recreational guidelines (NHMRC 2008).
 - Naphthalene concentrations exceeded ANZECC 2000 guidelines for 95% protection of freshwater species.
 - TRH F1 (C₆-C₉ minus BTEX) and TRH F2 (C₁₀-C₁₆ minus naphthalene) concentrations exceeded NEPM 2013 HSL A/B.
 - TRH C₁₀-C₃₆ concentrations exceeded the Netherlands (2000) guidelines.

5.2.3 River water COPC

River water analytical results for the COPC are provided in Appendix D and summarised in Table 1, Appendix C. In summary, the groundwater samples analysed from River1 and River2 reported concentrations of COPC below the LOR and below the adopted assessment criteria for all analytes.

5.2.4 Natural attenuation parameters

The MNA suite was analysed in five groundwater wells based on locations within the plume (MW6, MW11 and MW14) from a high contaminant concentration well at the source (MW14) through to a low contaminant concentration well near the Orara River (MW11) as well as background wells (MW2 and MW9).

Methane, ferrous iron and manganese concentrations were elevated in MW14, MW11 and MW6, where elevated concentrations of TRH and BTEXN were also reported. Methane and ferrous iron concentrations were below the LOR and manganese concentrations were very low in MW2 and MW9, where TRH and BTEXN were also reported below the LOR.

Nitrate-N concentrations were below the laboratory LOR in all locations except MW2, and sulphate-S concentrations were below the LOR at MW2, MW11 and MW14.

Further discussion on the results of the natural attenuation analysis is presented in Section 6.2.

5.2.5 QA/QC results

Field program

All fieldwork was carried out in accordance with the QA/QC requirements provided in Section 3.4.2 with the exception of the sampling method used at MW14 and the collection of interlaboratory duplicate samples. As discussed in Section 3.2.2, MW14 was sampled with a disposal bailer due to limitations of the suction capacity of the peristaltic pump available onsite, when drawing water from a greater depth (than the other wells) in that location. Using a bailer for the sampling of MW14 represents a deviation from the proposed methodology presented in the GMP (GHD 2017a) which states that 'groundwater samples are to be collected using a low flow micropurge sampler'. Given COPC concentrations in MW14 gained during this assessment were relatively consistent with concentration trends noted in previous monitoring rounds, it is considered the data gained from the two methods (low flow and bailer) would be comparable enough to meet the objectives of this assessment. Any future sampling rounds under the GMP are to be completed using the same (micropurge) methods prescribed in the GMP, in order to obtain repeatable and comparable results.

The field QC duplicate results are presented in Table 4, Appendix C.

Two groundwater intra-laboratory duplicates were analysed as part of the sampling program:

- MW12 and DUP1
- MW6 and DUP2

Assessment of field QC duplicate samples was undertaken by calculating the RPD of the duplicate sample pair and comparing against the nominated acceptance criteria. The duplicate samples were analysed for the same parameters as the primary samples. The analyte concentration RPD results were within the acceptable range, with the exception of the outliers presented in Table 5-1.

Sample ID	Sample type	Analyte	RPD	Higher sample
MW12 and DUP1	Intra lab	Toluene	60%	DUP1
MW12 and DUP1	Intra lab	Xylene (o)	96%	DUP1
MW12 and DUP1	Intra lab	Naphthalene	143%	DUP1
MW6 and DUP2	Intra lab	TPH C ₁₀ -C ₁₄	55%	DUP2
MW6 and DUP2	Intra lab	Toluene	56%	MW6
MW6 and DUP2	Intra lab	Xylene (o)	91%	MW6
MW6 and DUP2	Intra lab	Naphthalene	143%	DUP2

Table 5-1 RPD exceedances

Elevated RPDs are attributable to low concentrations of these analytes in these particular samples (primary and duplicates), where a relatively small absolute difference results in a large RPD. As the particular analytes for which the RPD threshold was exceeded do not govern the risk to receptors, the discrepancy is not expected to materially affect the outcome of the assessment.

While the overall frequency of duplicate samples was in accordance with the GMP, the lack of interlaboratory duplicates precludes assessment of potential interlaboratory bias; although the accuracy of the project laboratory can still be assessed on the basis of the laboratory's internal quality control measures (e.g. surrogates and laboratory control spikes). The inclusion of interlaboratory duplicate samples in the SAQP (as discussed in Section 3.3) would have provided additional data to assess the significance of elevated RPDs noted for some analytes in the intralaboratory duplicates. Additional groundwater monitoring events are to include inter-laboratory duplicates as per the requirements of the GMP (GHD 2017). Two trip blanks (TB01 and TB02) were analysed as part of the groundwater investigations with TRH and BTEXN concentrations reported below the LOR indicating that no contamination was introduced during the transport and storage of samples from the time of sampling to the time of analysis. Two trip spikes (TS01 and TS02) were analysed as part of the groundwater investigations with results compared to a control sample. All recoveries were within the acceptable range of 70%-130% indicating that no significant loss of volatile contaminants occurred during the transport and storage of samples from the time of sampling to the time of analysis. Results are presented in Table 5, Appendix C.

Two rinsate blanks (Rinsate1 and Rinsate2) were collected and analysed as part of the groundwater investigations. The rinsate blanks did not report any detection of TRH and BTEXN. Therefore the risk of cross contamination during the groundwater sampling was considered to be low. Results are presented in Table 5, Appendix C.

Laboratory program

Laboratory QA/QC documentation is presented in Appendix D.

The NATA certified laboratory QA/QC sheets refer to a quality control program comprising the analysis of spikes, method blanks, surrogates, holding times and duplicate samples.

No QA/QC non-compliances were noted in the laboratory report, however it was noted that the LORs for MW11 were raised due to the high concentration of one or more analytes.

QA/QC summary

Noting the deviations from the SAQP and QA/QC program provided in the GMP (GHD 2017a), including the sampling method used at MW14 and omission of inter-laboratory duplicates and variance noted in intra-laboratory duplicate analyte concentrations, the data is considered to be valid and of sufficient quality to meet the data quality objectives for this assessment.

6. Discussion

6.1 Contamination status

6.1.1 Groundwater

In the following discussion, comparison of petroleum hydrocarbon results refers to the NEPM 1999 TRH fractions (as opposed to the NEPM 2013 fractions), to enable comparison with the data reported in historic reports. Table 2, Appendix C shows a comparison of current results to historic results, Table 6-1 shows contaminant trends from 2015 to 2017 and Figure 6-1 presents historical benzene trends for the wells GHD sampled in this GME.

A comparison of the current data to the previous monitoring rounds shows an overall decrease in BTEXN and TRH concentrations in all wells. A comparison of the current results to the 2015 results was undertaken, with the following points observed:

- In MW2 and MW20, TRH and BTEXN concentrations decreased to below the laboratory LOR compared to 2015 results, which has resulted in benzene concentrations dropping below the adopted assessment criteria.
- In MW18, benzene concentrations have reduced by an order of magnitude, but remain above the ADWG and recreational criteria. Concentrations of all other COPC have also decreased and remain below the adopted assessment criteria.
- In MW4B and MW11, benzene concentrations have reduced significantly (over an order of magnitude in MW4B, and by a factor of 6 in MW11), but remain above the ADWG and recreational criteria. TRH concentrations have decreased to below the adopted Netherlands (2000) criteria.
- MW9, MW10 and MW15 TRH and BTEX concentrations have remained below the LOR.
- MW6 and MW12 benzene concentrations have reduced by about a factor of 4, but remain above the ADWG and recreational criteria. Most other COPC concentrations also reduced.
- Benzene concentrations only reduced slightly in MW14, and remain above the ADWG and recreational criteria, the freshwater GILs and above the HSL A/B.
- There have been some minor increases in toluene, ethylbenzene and/or xylene concentrations in MW6, MW11, MW12 and MW14, with xylene (m&p) in MW6 reported above the NEPM 2013 GILs for freshwater during the current monitoring round. In MW12, xylene (m&p) concentrations have increased to above NEPM 2013 GILs for freshwater, however xylene (o) and total xylene concentrations have decreased to below the adopted assessment criteria. All other increases are considered insignificant and have not resulted in additional exceedances of the adopted assessment criteria.
- Overall contaminant concentrations appear to have decreased in all wells, except MW14, where, due to the increase in xylene concentrations, the overall contamination status is considered stable (i.e. no significant changes from the 2015 monitoring round).
- The influence of SWLs in each monitoring well being higher than average (as discussed in Section 5.1) is uncertain; however, it possible that concentrations would tend to be increased by higher groundwater levels saturating the 'smear zone' around the historical groundwater table, and as contaminants are 'flushed' downgradient from the source area.

	TRH	Benzene	Toluene	Ethylbenze	Xylene	Overall
MW2	\downarrow	\downarrow	\rightarrow	\downarrow	\rightarrow	\downarrow
MW4B	\downarrow	\downarrow	\rightarrow	\downarrow	\rightarrow	\downarrow
MW6	\downarrow	\downarrow	\leftrightarrow	\downarrow	1	\downarrow
MW9	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
MW10	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
MW11	\downarrow	\downarrow	$\boldsymbol{\leftarrow}$	\downarrow	\uparrow	\downarrow
MW12	\downarrow	\downarrow	\leftarrow	\downarrow	\rightarrow	\downarrow
MW14	\downarrow	\downarrow	\downarrow	\uparrow	\uparrow	\leftrightarrow
MW15	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
MW18	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
MW20	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow

Table 6-1 Contaminant trends from 2015 to 2017

represents an increasing concentration trend from 2015 to 2017 represents a stable concentration trend <LOR from 2015 to 2017 represents a decreasing concentration trend from 2015 to 2017 represents a stable concentration trend >LOR from 2015 to 2017

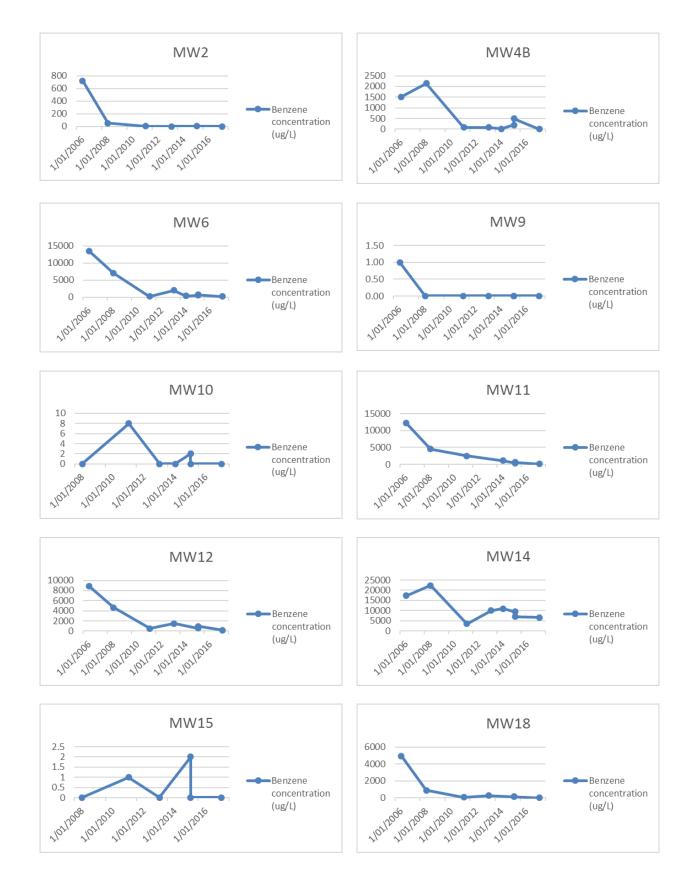
6.1.2 River water

 \leftrightarrow

 \leftrightarrow

A comparison of current results to historic results is presented in Table 3, Appendix C. Contaminant concentrations in river water samples were below the LOR at both locations, which is consistent with previous monitoring rounds. This indicates that the impacted groundwater is not causing significant impacts in the Orara River. Risks to ecological and recreational receptors in the river, from the hydrocarbon plume are considered to be low.

6.2 Natural attenuation


Natural attenuation is the process of breaking down contamination through one or a combination of naturally occurring physical, chemical or biological processes. Natural attenuation processes are evaluated through three key lines of evidence:

- Primary evidence shrinkage of plume extent and attenuation of contaminant concentrations.
- Secondary evidence trends in chemical indicator parameters which support the presence of active biological degradation processes.
- Tertiary evidence demonstrated presence of bacterial fauna which are known to degrade the identified COPC.

6.2.1 Primary lines of evidence

Illustrative representations of benzene trends in select groundwater wells at the site since groundwater monitoring commenced are presented in Figure 6-1. Benzene concentrations (excluding MW14 which did not significantly reduce, and MW9, MW10 and MW15 which remained below LOR) since 2015 are presented in Figure 6-2. Benzene concentrations either decreased or remained below the LOR compared to the 2015 results in all wells sampled during this GME.

Based on these results, it appears that natural attenuation processes have been occurring at the site. Figure 6-2 shows a brief peak in concentrations in 2015 after the treatment system was shut down, after which concentrations in 2017 have reduced to below those present in 2015 before the system was shut down.

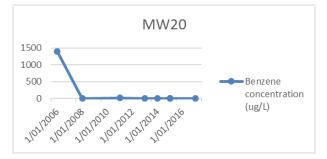


Figure 6-1 Benzene trends since groundwater monitoring commenced

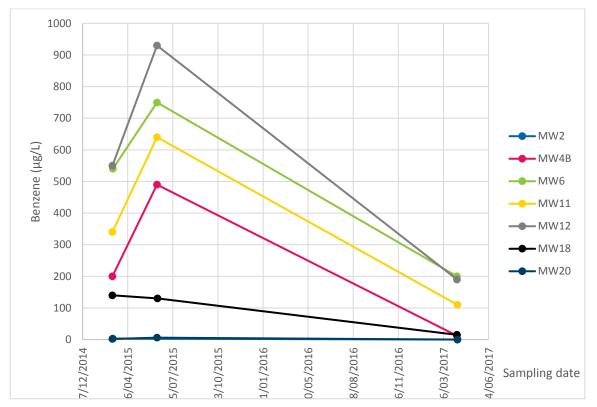
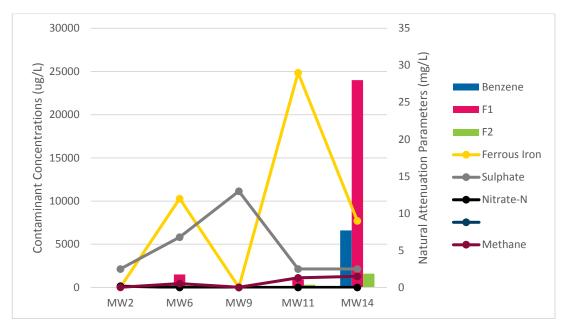



Figure 6-2 Benzene concentrations since 2015

6.2.2 Secondary lines of evidence

For the purpose of evaluating whether natural attenuation of hydrocarbon contaminants was likely to be occurring at the site, key geochemical parameters were analysed, as summarised in Table 6 in Appendix C. Illustrative representations of the natural attenuation indicators and concentrations of COPC across the site are presented in Figure 6-3. For the purposes of the below figure, where concentrations were below the laboratory LOR, half the LOR was used.

Figure 6-3 Natural Attenuation Indicators vs COPC Concentrations – April 2017

Dissolved oxygen

DO concentrations (not shown in above figures) should be lowest in wells with hydrocarbon impact, within the inferred source zone and down hydraulic gradient of the plume. The concentrations of DO were highest in the background wells with no hydrocarbon impact (MW2 and MW9). Low DO concentrations were reported in impacted wells MW6 and MW11. While DO readings were not recorded for MW14, historical DO concentrations for this location were low.

Nitrate

For de-nitrification to occur, the following conditions must be met: (1) nitrate-reducing bacteria must be present in the affected aquifer, (2) nitrate must be present, (3) biodegradable organic carbon must be present, and (4) lightly reducing conditions must prevail¹.

Nitrate concentrations were below the laboratory LOR in all wells, except background well MW2, suggesting that de-nitrification is not currently a significant pathway.

Manganese

Manganese (Mn⁴⁺) is the next preferred electron receptor, being reduced to its more soluble Mn²⁺ form. Manganese concentrations in groundwater were highest in MW14, then MW11 and MW6, indicating manganese is an important component of natural attenuation processes occurring in the plume. Manganese concentrations were low (at naturally occurring levels) in the background wells MW2 and MW9.

Ferrous iron

After the available oxygen, nitrate and manganese have been depleted, naturally occurring $Fe(OH)_3$ will be the preferred electron acceptor, producing ferrous iron (Fe^{2+}).

Ferrous iron concentrations were below the LOR in background wells (MW2 and MW9) but were detected in the impacted wells (MW6, MW11 and MW14). This suggests that natural attenuation processes are occurring via this pathway through the source zone.

¹ Wiedemeier, TH, Rifai, HS, Newell, CJ, and Wilson, JT, (1999). Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface. John Wiley & Sons, Inc.

Sulphate

After the available oxygen and nitrate have been depleted, sulphate-reducing bacteria can begin degrading petroleum hydrocarbons.

Sulphate concentrations were detected in one background well (MW9) and one impacted well (MW6), while the other background well (MW2) and other impacted wells (MW11 and MW14) did not contain sulphate.

The presence of sulphate in MW6 indicates that there may be availability of sulphate to act as an electron acceptor for biodegradation within site, although this does not seem to be consistently available at the site.

Due to the absence of sulphate at the impacted source zone wells, manganese and ferrous iron are currently the preferred electron acceptors in these wells.

Methane

Methanogenesis is a process commonly observed in the degradation of petroleum hydrocarbons, generally within the source zone where other preferred electron receptors have been depleted. It is a two-step process involving fermentation and respiration. In the first step, BTEX compounds are fermented to compounds such as acetate (CH₃COOH) and hydrogen (H⁺) and in the second step, the bacteria use the acetate as an electron acceptor, generating methane⁽¹⁾. Carbon dioxide from the groundwater will also serve as an electron acceptor during methanogenesis.

The highest methane concentrations were measured within the impacted wells (MW14, MW11 and MW6 in order of decreasing concentration), while methane concentrations were below the LOR in the background wells (MW2 and MW9). This indicates that methanogenesis is occurring in the vicinity of the hydrocarbon impact.

6.2.3 Summary

Overall, there is strong evidence to indicate that natural attenuation of hydrocarbons is occurring at the site. Given that the contaminant concentrations at the site have decreased since 2015, it appears that natural attenuation has been occurring at the site since the air sparge unit was turned off in 2015, particularly in the lower areas of the plume. Although geochemical parameters indicate natural attenuation processes are occurring at MW14, there has not been a significant decrease in hydrocarbon concentrations at this location since 2015, suggesting there is a significant residual source of contamination in the upper area of the plume.

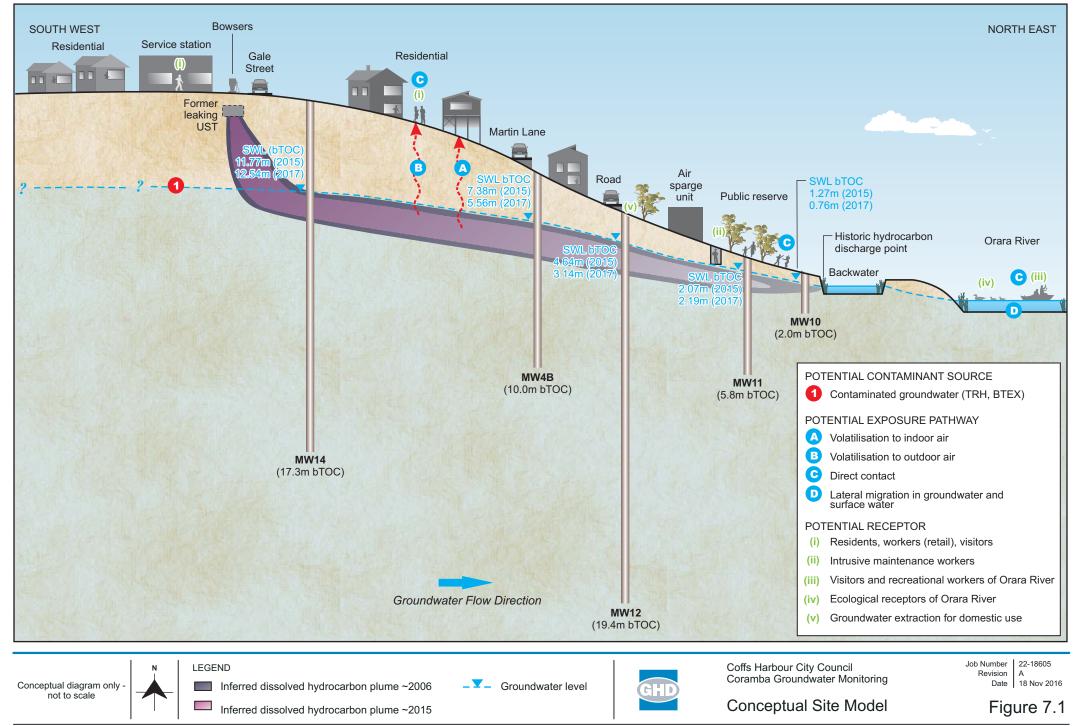
Based on the results, it appears that MW9 is a suitable background location and could replace MW2 for natural attenuation monitoring in the future.

6.3 Groundwater trigger levels for further assessment

None of the groundwater trigger levels for further assessment discussed in Section 4.3 have been exceeded and groundwater monitoring in the future should occur in accordance with the GMP.

7. Conceptual site model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. A CSM provides the framework for identifying contamination sources and how potential receptors may be exposed to contamination.


Based on the information collected as part of this investigation, the CoPC in groundwater beneath the site are considered to comprise:

- TRH
- BTEXN

The presence of TRH and BTEXN concentrations exceeding guideline levels in a number of wells throughout the site is due to a historical leak in a UST from the up gradient service station. Since the removal of this UST contaminant concentrations have generally been decreasing, however source-pathway-receptor linkages are still present. The CSM refers to impacted groundwater only. A summary of the potential contaminant source – pathway – receptor linkages is provided in Table 7-1 and Figure 7-1.

Table 7-1 Conceptual site model

Potential Source	Potential Pathway	Potential Receptor	Potential for completeness
TRH and BTEXN in groundwater beneath the site and lateral migration off site	Volatilisation to indoor air (shops along Gale street and residences) and subsequent inhalation	Residents Visitors Retail workers	Potentially complete due to benzene (in MW14) and TRH (in MW14, MW12 and MW6) concentrations exceeding health screening levels (HSL) for vapour intrusion in monitoring wells adjacent to residential properties.
	Volatilisation to outdoor air and subsequent inhalation	Retail workers Intrusive maintenance workers Residents Visitors	Incomplete except for intrusive maintenance workers as any volatilisation (of benzene or TRH exceeding HSLs) would disperse in outdoor air. (HSLs for HSL C – outdoor areas – are not limiting).
	Direct contact (accidental ingestion)	Intrusive maintenance workers exposed to groundwater. Recreational users of Orara River	Potentially complete for intrusive maintenance workers given exceedances of direct contact (recreational) assessment criteria in several monitoring wells. Incomplete for recreational users of the Orara River given lack of surface water concentrations exceeding assessment criteria.
	Lateral migration in groundwater and surface water (Orara River)	Ecological and recreational receptors to Orara River and adjacent riparian zone	Potentially complete to recreational receptors in the riparian zone to the south of the river given benzene concentrations exceeding recreational assessment criteria in MW11 (adjacent to the Orara River). Incomplete in the Orara River given lack of surface water concentrations exceeding assessment criteria.
		Groundwater extraction for domestic use	Incomplete given restrictions on groundwater extraction for domestic use and the nearest registered domestic well-being located 300 m north west of the site (outside of the plume).

N:\AU\Launceston\Projects\22\18605\2218605_LTN_01.cdr

Level 3, GHD Tower, 24 Honeysuckle Drive Newcastle NSW 2300 T 61 2 4979 9999 F 61 2 4979 9988 E ntlmail@ghd.com W www.ghd.com

© 2016. Whilst every care has been taken to prepare this map, GHD makes no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Created by: bwatt

8. Conclusions

GHD was engaged by CHCC to complete a groundwater monitoring event in April 2017 as part of the implementation of the Groundwater Management Plan (GHD, 2017a) for the future management and monitoring of hydrocarbon impacted groundwater in Coramba, NSW. Groundwater sampling of 11 existing groundwater monitoring wells was undertaken and river water samples were collected from two locations in the Orara River.

With reference to the objectives in Section 1.2 and in accordance with the limitations set out in Section 9 the following summary and conclusions are made.

A comparison of the current data to the previous monitoring rounds shows an overall decrease in BTEXN and TRH concentrations in all wells except MW14, which is near the top (source) end of the groundwater contamination plume. A comparison of the current results to the 2015 results was undertaken, with the following points of interest noted:

- In MW2 and MW20, TRH and BTEXN concentrations decreased to below the laboratory LOR compared to 2015 results, which has resulted in benzene concentrations dropping below the adopted assessment criteria.
- In MW18, benzene concentrations have reduced by an order of magnitude, but remain above the ADWG and recreational criteria. Concentrations of all other COPC have also decreased and remain below the adopted assessment criteria.
- In MW4B and MW11, benzene concentrations have reduced significantly (over an order of magnitude in MW4B, and by a factor of 6 in MW11), but remain above the ADWG and recreational criteria. TRH concentrations have decreased to below the adopted Netherlands (2000) criteria.
- MW9, MW10 and MW15 TRH and BTEX concentrations have remained below the LOR.
- MW6 and MW12 benzene concentrations have reduced by about a factor of 4, but remain above the ADWG and recreational criteria. Most other COPC concentrations also reduced.
- Benzene concentrations only reduced slightly in MW14, and remain above the ADWG and recreational criteria, the freshwater GILs and above the HSL A/B for vapour intrusion.
- There have been some minor increases in toluene, ethylbenzene and/or xylene concentrations in MW6, MW11, MW12 and MW14, with xylene (m&p) in MW6 now above NEPM 2013 GILs for freshwater. In MW12, xylene (m&p) concentrations have increased to above NEPM 2013 GILs for freshwater, however xylene (o) and total xylene concentrations have decreased to below the adopted assessment criteria. All other increases are considered insignificant and have not resulted in additional exceedances of the adopted assessment criteria.
- Overall contaminant concentrations appear to have decreased in all wells, except MW14, where, due to the increase in xylene concentrations, the overall contamination status is considered stable (i.e. no significant changes from the 2015 monitoring round).

- There is strong evidence to indicate that natural attenuation of hydrocarbons is occurring at the site. Given that the contaminant concentrations at the site have decreased since 2015, it appears that natural attenuation has been occurring at the site since the air sparge unit was turned off in 2015, particularly in the lower areas of the plume. Although geochemical parameters indicate natural attenuation processes are occurring at MW14, there has not been a significant decrease in hydrocarbon concentrations at this location since 2015, suggesting there is a significant residual source of contamination in the upper area of the plume.
- Based on the results, it appears that MW9 is a suitable background location and can replace MW2 for natural attenuation monitoring in the future.
- None of the groundwater trigger levels for further assessment have been exceeded and groundwater monitoring in the future should occur in accordance with the GMP.
- No odours were noted or reported that trigger implementation of contingency measures outlined in the Odour Management Plan (GHD 2017b).
- Contaminant concentrations in river water samples were below the LOR at both locations, which is consistent with previous monitoring rounds. This indicates that the impacted groundwater is not causing significant impacts in the Orara River. Risks to ecological and recreational receptors in the river, from the hydrocarbon plume are considered to be low.
- Potentially complete Source pathway receptor linkages remain present at the site for volatilisation to indoor air, direct contact with groundwater and lateral migration to ecological and recreational receptors in the riparian zone of the Orara River.

9. Limitations

This groundwater monitoring report ("Report") has been prepared by GHD Pty Ltd ("GHD") for use by Coffs Harbour City Council for the purpose as stated in Section 1.2 of the report.

GHD and its servants, employees and officers otherwise expressly disclaim responsibility to any person other than Coffs Harbour City Council arising from or in connection with this Report.

To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by GHD and the Report are excluded unless they are expressly stated to apply in this Report.

The services undertaken by GHD in connection with preparing this Report:

- Were limited to those specifically detailed in Section 1.3 of this Report.
- Were undertaken in accordance with current profession practice and by reference to relevant environmental regulatory authority and industry standards, guidelines and assessment criteria in existence as at the date of this Report.

The opinions, conclusions and any recommendations in this Report are based on assumptions made by GHD when undertaking the services mentioned above and preparing the Report ("Assumptions"), as specified throughout this Report.

GHD expressly disclaims responsibility for any error in, or omission from, this Report arising from or in connection with any of the Assumptions being incorrect except where GHD has been negligent in the adoption of those Assumptions.

Subject to the paragraphs in this section of the Report, the opinions, conclusions and any recommendations in this Report are based on conditions encountered and information reviewed at the time of preparation of this Report and are relevant until such times as the site conditions or relevant legislations changes, at which time, GHD expressly disclaims responsibility for any error in, or omission from, this Report arising from or in connection with those opinions, conclusions and any recommendations.

GHD has prepared this Report on the basis of information provided by Coffs Harbour City Council, which GHD has not independently verified or checked ("Unverified Information") beyond the agreed scope of work.

GHD expressly disclaims responsibility in connection with the Unverified Information, including (but not limited to) errors in, or omissions from, the Report, which were caused or contributed to by errors in, or omissions from, the Unverified Information.

No investigations have been undertaken into any off-site conditions, or whether any adjoining sites may have been impacted by contamination or other conditions originating from this site, beyond that explained in this report.

The opinions, conclusions and any recommendations in this Report are based on information obtained from, and testing undertaken at or in connection with, specific sampling points and may not fully represent the conditions that may be encountered across the site at other than these locations. Site conditions at other parts of the site may be different from the site conditions found at the specific sampling points.

GHD has considered and/or tested for only those chemicals specifically referred to in this Report, and makes no statement or representation as to the existence (or otherwise) of any other chemicals.

Site conditions (including any the presence of hazardous substances and/or site contamination) may change after the date of this Report. GHD expressly disclaims responsibility:

- Arising from, or in connection with, any change to the site conditions
- To update this Report if the site conditions change

Subsurface conditions can vary across a particular site and cannot be exhaustively defined by the investigations carried out prior to this Report. As a result, it is unlikely that the results and estimations expressed or used to compile this Report will represent conditions at any location other than the specific points of sampling. A site that appears to be unaffected by contamination at the time of the Report may later, due to natural causes or human intervention, become contaminated.

Except as otherwise expressly stated in this Report, GHD makes no warranty, statement or representation of any kind concerning the suitability of the site for any purpose or the permissibility of any use, development or re-development of the site.

These Disclaimers should be read in conjunction with the entire Report and no excerpts are taken to be representative of the findings of this Report.

To the extent of any inconsistency between this Disclaimer and the terms of any service agreement between Coffs Harbour City Council and GHD pursuant to which this Report was prepared, the terms of the service agreement will prevail.

10. References

ANZECC/ARMCANZ (2000). National Water Quality Management Strategy, Paper No. 4, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, October 2000. Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).

Department of Environment and Conservation (DEC) 2006. *Guidelines for the NSW Site Auditor Scheme (2nd edition)*.

Department of Primary Industries Office of Water (DPI OoW). *Groundwater database*. <u>http://allwaterdata.water.nsw.gov.au/water.stm</u>

Friebel, E and Nadebaum, P (2011). *Health screening levels for petroleum hydrocarbons in soil and Groundwater. Summary*, CRC CARE Technical Report no. 10, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

GHD (2017a). Hydrocarbon Impacted Groundwater, Coramba, NSW – Groundwater Management Plan. February 2017.

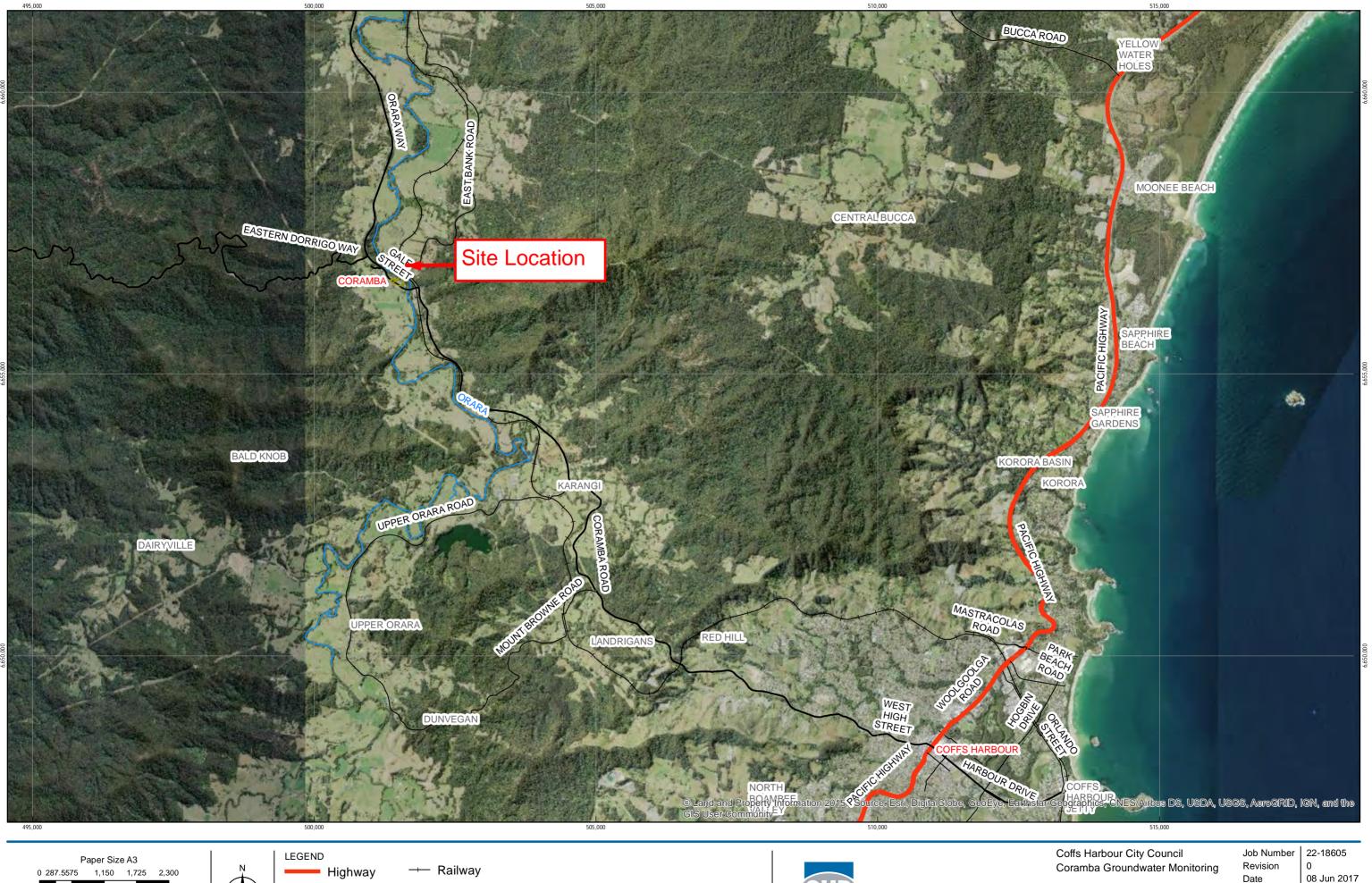
GHD (2017b) *Hydrocarbon Impacted Groundwater, Coramba. Odour Management Plan.* February 2017.

Ministry of Housing (Netherlands), Spatial Planning and the Environment (2000). Environment Quality Objectives in the Netherlands for petroleum hydrocarbons in groundwater (screening levels only).

NEPC (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended by the National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1), National Environment Protection Council, May 2013.

NHMRC (2008). *Guidelines for Managing Risks in Recreational Water.* National Health and Medical Research Council, 2008.

NHMRC, NRMMC (2011). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia, Canberra, 2011.


NSW Land & Property Information. SIX Maps. http://maps.six.nsw.gov.au/

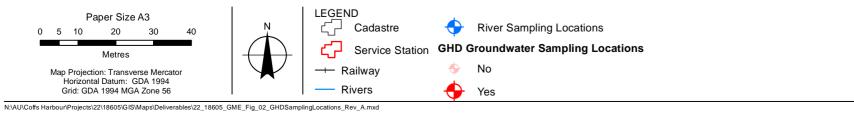
WSP (2015). Groundwater Monitoring Report – Coramba. March 2015.

Appendices

GHD | Report for Coffs Harbour City Council - Coramba Groundwater Monitoring - April 2017, 22/18605

Appendix A – Figures

N:\AU\Coffs Harbour\Projects\22\18605\GIS\Maps\Deliverables\22_18605_GME_Fig_01_SiteLocation_Rev_A.mxd


© 2017. Whilst every care has been taken to prepare this map, GHD (and NSW LPI) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: NSW LPI, DCDB (2012) / Aerial Imagery (2015). Created by:slmartin

Site Location

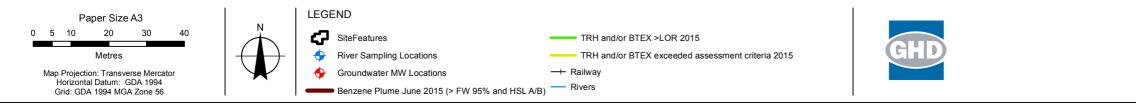
230 Harbour Drive Coffs Harbour NSW 2450 Australia T 61 2 6650 5600 F 61 2 6650 5601 E cfsmail@ghd.com W www.ghd.com

Figure 1

© 2017. Whilst every care has been taken to prepare this map, GHD (and NSW LPI) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: NSW LPI, DCDB (2012) / Aerial Imagery (2015). Created by:slmartin

Coffs Harbour City Council Coramba Groundwater Monitoring

Revision Date


Job Number | 22-18605 0 08 Jun 2017

GHD Sampling Locations

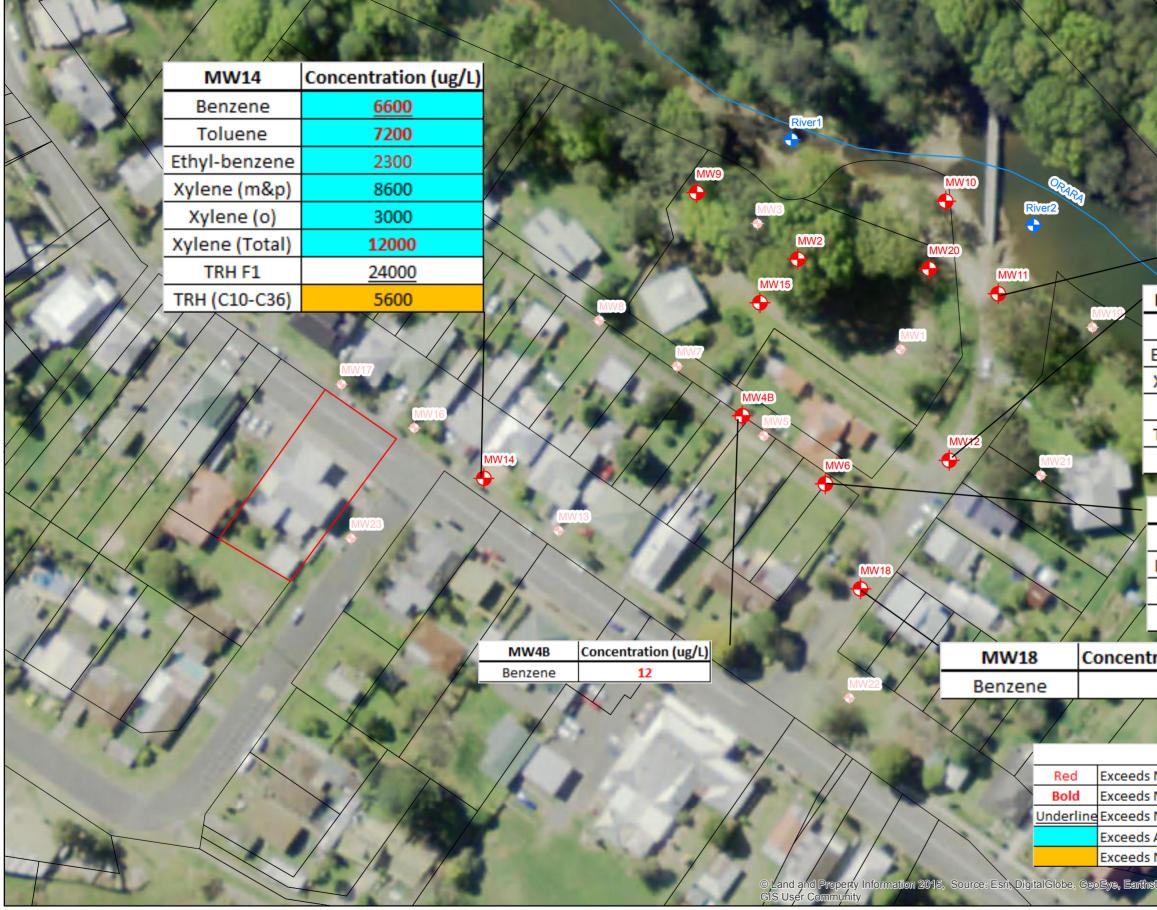
230 Harbour Drive Coffs Harbour NSW 2450 Australia T 61 2 6650 5600 F 61 2 6650 5601 E cfsmail@ghd.com W www.ghd.com

MW1 Benze Tolue Ethyl-ben Xylene (t) TPH (C10 MW17 Concentration (ug/L) Benzene 140 TPH (C10-C36) 700 Kervice Station (Lot 2 DP 264343) MW23 Concentration (ug/L)	ene 1800 ene 2400 nzene 570 total) 3130	Image: state	876790) MW20 MW11 Nocate	MW11 Concentration (ug/L) Benzene 640 TPH (C10-C36) 1000 WY19 Could not locate treatment system: IDP 876790) MW12 Concentration (ug/L) Benzene 930 Ethyl-benzene 480
MW23 Concentration (ug/L) Benzene 3300 Toluene 1000 Ethyl-benzene 440 Xylene (total) 1160 MW14 Concentration (ug/L) Benzene 7000 Toluene 8600 Ethyl-benzene 1600 Xylene (total) 7900 Toluene 1600 Xylene (total) 7900 TPH (C10-C36) 7820	MW13Concentration (ug/L)Benzene38TPH (C10-C36)1230MW4BConcentration (ug/L)	AW18 Concentration (ug/L) enzene 130	Be Ethyl-	With the first time in 2015 MW6 Concentration (ug/L) Inzene 750 Ibenzene 420 C10-C36) 1300 MW6 MW24 Concentration (ug/L) Ibenzene 420 C10-C36) 1300 MW6 Image: Concentration (ug/L) Ibenzene 420 C10-C36) 1300 Image: Concentration (ug/L) 1500 Image: Concentratin (ug/L) 1500 Im

N:\AU\Coffs Harbour\Projects\22\18605\GIS\Maps\Deliverables\22_18605_GME_Fig_03_InterpretedExtent2015_Rev_A.mxd

© 2017. Whilst every care has been taken to prepare this map, GHD (and LPI) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: LPI: DCDB 2012 ; LPI: Sixmaps Aerial Imagery 2015. Created by:slmartin

230 Harbour Drive Coffs Harbour NSW 2450 Australia T 61 2 6650 5600 F 61 2 6650 5601 E cfsmail@ghd.com W www.ghd.com


Coramba Groundwater Monitoring

Interpreted extent of impact 2015

Revision Date

0 08 Jun 2017

Figure 3

G:\22\18605\GIS\Maps\Deliverables\22_18605_GME_Fig_04_GroundwaterExceedances_Rev_B.mxd

© 2017. Whilst every care has been taken to prepare this map, GHD (and NSW LPI) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tot or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: NSW LPI, DCDB (2012) / Aerial Imagery (2015). Created by:sldouglas

230 Harbour Drive Coffs Harbour NSW 2450 Australia T 61 2 6650 5600 F 61 2 6650 5601 E cfsmail@ghd.com W www.ghd.com

MW11	Concentration (ug/L)
Benzene	110
	Concentration (ug/L)
Benzene	190
Ethyl-benzene	290
Xylene (m&p)	280
Napthalene	60
TRH (C10-C36)	750
TRH F1	<u>1700</u>
	Concentration (un(1))
MW6/DUP2	Concentration (ug/L)
Benzene	200
Ethyl-benzene	270
Xylene (m&p)	290
TRH F1	1700
ration (ug/L)	
15	
MW24	
Results from Ap	
NHMRC (2011) ADW NHMRC (2008) Recre	G and NEPM (2013) GIL DW
NEPM (2013) HSL A/I	
INCRIVI (2015) HSLA/I	5
ANZECC (2000) FW 9	5%, NEPM (2013) GIL FW
	5%, NEPM (2013) GIL FW
ANZECC (2000) FW 9 Netherlands (2000) 1	5%, NEPM (2013) GIL FW

Coffs Harbour City Council Coramba Groundwater Monitoring Job Number 22-18605 Revision Date

0 14 Jun 2017

Groundwater Exceedances 2017 Figure 04

Appendix B – Photographs

Appendix B – Site Photographs

Photograph 1. Orara River in March 2017.

Photograph 3. Orara River in March 2017.

Photograph 5. River bed near previous groundwater discharge point adjacent to the Orara River.

Photograph 2. Orara River in March 2017.

Photograph 4. Orara River in March 2017.

Photograph 6. Groundwater sampling undertaken in April 2017.

Appendix C – Summary Results Tables

GHD

Appendix C Table 1 Analytical Results 2017

		TRH	- NEPN	/ 2013	3			TRH - I	NEPM	1999				В	TEX			PAH
	C6-C10 minus BTEX (F1)	C6 - C10 Fraction	>C10-C16 minus Naphthalene (F2	>C10 - C16 Fraction	>C16 - C34 Fraction (F3)	>C34 - C40 Fraction (F4)	C6 - C 9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 (Sum of Total)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	Naphthalene
LOR	μg/L	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L			μg/L		μg/L	μg/L	μg/L
ADWG 2015 Health	20	20	50	50	100	100	20	50	100	100	100	1	1 800	1 300	1	2	3 600	10
NEPM 2013 Table 1C GILs, Drinking Water												1	800	300			600	
NHMRC Recreational Guidelines 2008												10	8000	3000			6000	
NEPM 2013 Table 1A(4) HSL A/B Res GW for Vapour Intrusion, Sand																		
2-4m	1000		1000									800	NL	NL			NL	NL
4-8m	1000		1000									800	NL	NL			NL	NL
>8m	1000		1000									900	NL	NL			NL	NL
NEPM 2013 Table 1A(4) HSL C Rec GW for Vapour Intrusion, Sand																		
2-4m	NL		NL									NL	NL	NL			NL	<u>NL</u>
4-8m	NL		NL									NL	NL	NL			NL	NL
>8m	NL		NL									NL	NL	NL			NL	NL
ANZECC 2000 FW 95%												950	180	80	350	200	550	16
NEPM 2013 Table 1C GILs, Fresh Waters												950			350			16
Netherlands (2000)											600							

Site_ID	Field_ID	Loc_Code	Sampled_Date_Time																		
Groundwater																					
Coramba	MW2	MW2	6/04/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
Coramba	MW4B	MW4B	5/04/2017	440	650	<50	<50	<100	<100	560	70	<100	<100	<100	12	58	43	30	68	98	<10
Coramba	MW6	MW6	5/04/2017	<u>1500</u>	2200	140	140	<100	<100	1800	510	<100	<100	510	140	50	270	56	220	270	<10
Coramba	DUP2	MW6	5/04/2017	1700	2500	330	390	<100	<100	2000	900	<100	<100	900	200	28	260	21	290	310	60
Coramba	MW9	MW9	6/04/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
Coramba	MW10	MW10	5/04/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
Coramba	MW11	MW11	6/04/2017	940	1200	320	320	<100	<100	970	490	<100	<100	490	110	24	<10	<10	130	130	<10
Coramba	MW12	MW12	5/04/2017	1400	2200	210	210	<100	<100	1800	750	<100	<100	750	190	27	250	20	280	300	<10
Coramba	DUP1	MW12	5/04/2017	<u>1700</u>	2500	150	210	<100	<100	2100	480	<100	<100	480	160	50	290	57	230	290	60
Coramba	MW14	MW14	6/04/2017	24,000	52,000	<u>1600</u>	1900	<100	<100	44,000	5500	100	<100	5600	<u>6600</u>	7200	2300	3000	8600	12,000	350
Coramba	MW15	MW15	6/04/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
Coramba	MW18	MW18	5/04/2017	340	360	50	50	<100	<100	320	70	<100	<100	<100	15	<1	3	<1	3	3	<10
Coramba	MW20	MW20	6/04/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
River Water																					
Coramba	RIVER 1	RIVER 1	29/03/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10
Coramba	RIVER 2	RIVER 2	29/03/2017	<20	<20	<50	<50	<100	<100	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	<10

Coffs Harbour City Council Coramba

											Cu	rrent an	d Hist	toric G	iround	water	Data					
					Fie	ld Parame	eters						BT	EX				TRH	NEPM	1999		Commen
		SWL	Total well depth	OId	Purge volume	H	u	Temp	Q	RP	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	C6 - C 9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 (Sum of Total)	Observations
0.0		mbTOC	mbTOC	ppm	L	pH units	uS/cm	°C	mg/L	mV	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	-
OR NHMRC ADW 2011	1	-	-	-	-	-	-	-	-	-	1	1 800	1 300	1-2	1-2	3 600	10-20	50	100	100	100	
NEPM 2013 GIL Dri		-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
NHMRC Recreation		-	-	-	-	-	-	-	-	-	10	8000	3000	-	-	6000	-	-	-	-	-	
NEPM 2013 Groun NEPM 2013 Groun		-	-	-	-	-	-	-	-	-	800 NL	-	-	-	-	-	-	-	-	-	-	
ANZECC 2000 FW 9		-	-	-	-	-	-	-	-	-	950	180	80	200	350	550	-	-	-	-	-	
NEPM 2013 GIL Fre		-	-	-	-	-	-	-	-	-	950	-	-	-	350	-	-	-	-	-	-	
Netherlands (2000)	J)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	600	
Field_ID	Sampled_Date																					
	1/05/2006	-	-	-	-	-	-	-	-	-	2950	960	840	900	450	1350	5800	2840	ND	90	2930	
	29/01/2008 17/03/2011	4.25	-	- 0	20 10	6.35 5.92	263 0.315	23.5 22.55	0.69	144 1456*	<u>1020</u> 310	156 <100	375 240	288 <100	224 <100	512 ND	3150 1100	1440 620	ND <100	ND <100		Brown, turbid, no odour Slightly turbid, slight HC odour
MW1	22/08/2013	-	-									not locate			1							
	4/12/2014 4/03/2015	-	-									ampled not locate										
	11/06/2015	-	-									not locate										
	5/04/2017	-	-									ampled										
	1/05/2006	-	-	-	-	-	-	-	-	-	720	15500	1820	8800	3290	12090	28200	10300	300	60	10660	
	29/01/2008	4.77	-	-	40	6.5	177	19.6	0.54	236	50	1690	853		2050	6800	13000	7030	ND	ND		Strong HC odour and sheen
	17/03/2011	4.87	-	0	16	5.58	0.288	22.31	0.26	180.9*	4	<1	24	8	3	11	260	690	<100	<100		Very slight HC odour. No well cap, well sealed with tap
MW2	21/08/2013 4/12/2014	5.498	7.63	-	10	6.07	232.3	18.6	0.48	-135.2	<1 Not a	<1 sampled	1	<2	<1	ND	370	210	<100	<100	310	Clear, slight HC odour
	4/03/2015	4.08	4.73	-	2.5	4.25	138.2	19.5	3.32	177.5	3	2	3	2	5	7	19	<50	<100	<100	ND	Clear, no odour
	11/06/2015	dry	4.73	-								Dry										
	6/04/2017	3.81	4.78	0	3	4.73	138.3	20.1	3.31	34.1	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100	<100	Clear, no odour, no sheen
	1/05/2006	-	-	-	-	-	-	-	-	-	<5	<5	<5	<10	<5	ND	ND	ND	ND	ND	ND	
	29/01/2008	4.575	-	-	2	5.95	187.2	20.6	1.64	279	<1	<1	<1	<2	<1	ND	ND	ND	ND	ND	ND	Purged dry
	17/03/2011	4.64	-	0	6	4.3	0.17	20.79	0.79	414.6*	5	<1	7	3	<1	3	260	690	<100	<100	790	Clear with HC odour
MW3	21/08/2013 4/12/2014	5.2	5.54	-	1.5	5.16	155.1	18.2	0.7	35.3	<1 Not s	ampled	<1	<2	<1	ND	<10	<50	<100	<100	ND	Clear, slight HC odour
	4/03/2015	3.81	5.6	-	8	4.9	144.7	19.4	1.62	-6.8	<1	<1	<1	<1	<2	ND	<10	<50		<100		Clear, no odour
	10/06/2015 5/04/2017	4.97	-	-	3	5.3	160.3	18.9	1.61	103	<1 Nat 4	2	<1	<1	<2	ND	<10	<50	<100	<100	ND	Dark brown, turbid
	3/04/2017		-	1							NULS	ampled										
	15/06/2006	-	-	-	-	-	-	-	-	-	<u>1510</u>	1240	700	4030	1950	5980	9700	1340	ND	ND	1340	
	30/01/2008	6.97	-	- 0	30	6.51	328	21.4	0.9	169	<u>2150</u>	3700	918	2300		3880	13000	2130	ND	ND		HC odour
101/45	17/03/2011 19/08/2013	7.03	10	-	8.5	4.82 6.45	233 334.5	23 20.3	0.02	203*	89 82	110 39	46	60 64	65 55	125 119	310 1100	570 1200		<100 <100		Clear HC odour
MW4B	4/12/2014	8.36	9.9	-	10	6.45	340.1	20.6	0.8	-76.4	15	13	60	70	17	87	900	920	320	<100		Slightly cloudy, HC odour
	3/03/2015 10/06/2015	5.93	10 10	-	7	6.19 6.55	268.8 345.1	20.9 20.5	0.31	-96.5 -109	200 490	37 88	210 590	21 68	75 470	96 538	1200 4800	580 2600	<100 <100	<100 <100		Clear, HC odour Clear, HC odour
	5/04/2017	5.56	10.01	113	9	6.23	233.3	20.5	0.81	-92	12	58	43	68	30	98	560	70		<100		Clear, no odour, no sheen
		1.																				1
	1/05/2006 29/01/2008	dry dry	6.6 6.6	-								Dry Dry										Dry, HC odour
	17/03/2011	dry	6.6	337								Dry										
MW5	22/08/2013	dry	6.6	-								Dry										
	4/12/2014 4/03/2015	dry 5.36	6.6 6.6	-	4	4.6	86.7	21.2	1.41	140.7	1	Dry 2	1	1	3	4	96	<50	<100	<100	ND	Clear. no odour
	11/06/2015	dry	6.6	-		1	1		1	1		Dry			1 - 1	-						
	5/04/2017	-	-								Not s	ampled										
	15/06/2006	-	-	-	-	-	-	-	-	-	13500	13800	2290	7170	3130	10300	47500	7610	ND	70	7680	
	30/01/2008	6.135	-	-	12	6.48	303	21.5	1.03	146	7080	8690	2050		3180	8310						Strong HC odour
	17/03/2011	6.26	-	330	8	4.83	188.5	24.1	0.02	45*	270	170	77	180			920	1000		<100		Clear with strong HC odour
MW6	21/08/2013 3/12/2014	6.98 7.472	8.89 8.87	-	6	6.31 6.3	289.3 259.6	19.6 20.9	0.46	-203.1 -133.7	2000 410	190 22	1100 520	700 270	180 120	880 390	8000 2900	2700 2000	200 1200	<100 110		Clear, HC odour Turbid, HC odour
	4/03/2015	5.37	8.85	-	9	5.82	245.9	20.8	0.46	-158.8	540	380	670	350	870	1220	4400	1900	<100	<100		Clear, slight HC odour
	10/06/2015	6.52	8.85	-	6	5.76	234	20.9	0.16	-124	750	37	420	35	200	235	3000	1300	<100	<100		Clear, HC odour
	5/04/2017 DUP2	4.81	8.79 8.79	0	9	6.14 6.14	291.9 291.9	21.7 21.7	1.57 1.57	-122.2	140 200	50 28	270 260	220 290	56 21	270 310	1800 2000	510 900	<100 <100	<100 <100		Clear, no odour, no sheen Clear, no odour, no sheen
				-	-	-	-	-	-	-	2	ND 11	ND	ND	4	4	ND ND	ND ND	ND ND	ND 130	ND	
	15/06/2006	-	-														I ND	- NI)				
	30/01/2008	8.185	-	-	8	7.14	584 468	21.2 21.5	0.04	145 359*	<1	<1 4	<1 3	<2 8	<1 5	ND 13						Slightly cloudy Clear
	30/01/2008 17/03/2011 19/08/2013		-		8 4 31	7.14 4.96 5.82	584 468 480.3	21.2 21.5 20.6	0.04 0.19 0.14	145 359* -68	<1 1 <1	4 <1	<1 3 <1	8 <2	5 <1	13 ND	17 <10	79 <50	<100 <100	<100 <100		Clear Clear, no odour
MW7	30/01/2008 17/03/2011 19/08/2013 3/12/2014	8.185 9 8.33 9.41	- - 18 17.8	- 352 - -	4 31 18	4.96 5.82 6.88	468 480.3 468	21.5 20.6 20.3	0.19 0.14 0.77	359* -68 -116.1	1 <1 <1	4 <1 <1	3 <1 <1	8 <2 <2	5 <1 <1	13 ND ND	17 <10 <10	79 <50 <50	<100 <100 190	<100 <100 <100	179 ND 190	Clear Clear, no odour Slightly cloudy, no odour
 MW7	30/01/2008 17/03/2011 19/08/2013	8.185 9 8.33	- - 18	- 352 -	4 31	4.96 5.82	468 480.3	21.5 20.6	0.19 0.14	359* -68	1 <1	4 <1	3 <1	8 <2	5 <1	13 ND	17 <10	79 <50	<100 <100	<100 <100	179 ND 190 ND	Clear Clear, no odour

ts	
	_
	_
	_
	_]
	_]
pe	
	_
	_
	_

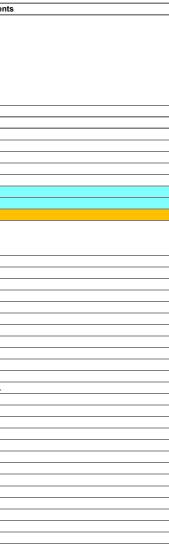
					F ²	ld Parame	tors					rrent an		EX			1	TDU	- NEPM	1000		Comment
		<u> </u>																		1999	=	Comment
		NS mbTOC	Total well depth	CI ppm	- Purge volume	E pH units	US/cm	Temp	Q mg/L	du mV	euazeue Beuzeue	Loluene μg/L	Ethylbenzene	T Xylene (m & p)	Xylene (o)	Xylene Total الم	C6 - C 9 Fraction	T/ ^{βπ} C10 - C14 Fraction	β 228 Fraction	C29 - C36 Fraction	전 C10 - C36 (Sum of Total)	Observations
R		-	-	-	-	-	-	-	-	-	<u>μ<u></u><u>β</u>/L 1</u>	μ <u>g</u> /ι 1	1 1	1-2		μ <u>g</u> /ι3	10-20	μg/L 50	100	100	100	
HMRC ADW 2011	l	-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
EPM 2013 GIL Dr	-	-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
IHMRC Recreation IEPM 2013 Groun		-	-	-	-	-	-	-	-	-	10 800	8000	3000	-	-	6000	-	-	-	-	-	
IEPM 2013 Groun		-	-	-	-	-	-	-	-	-	NL	-	-	-	-	-	-	-	-	-	-	
NZECC 2000 FW 9		-	-	-	-	-	-	-	-	-	950	180	80	200	350	550	-	-	-	-	-	
IEPM 2013 GIL Fre		-	-	-	-	-	-	-	-	-	950	-	-	-	350	-	-	-	-	-	-	
letherlands (2000 ield_ID	Sampled_Date	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	600	
																						1
	15/06/2006 30/01/2008	- 9.55	-	-	- 32	- 6.44	- 258	- 21.5	- 0.95	- 244	4 <1	ND <1	ND <1	ND <2	4 <1	4 ND	ND ND	ND ND	ND ND	ND 140	ND	Grey, clear, no odour
	17/03/2011	9.55	-	1924	7	4.56	307	21.5	0.95	422*	<1	3	2	6	3	9	14	62	<100	<100		
MW8	19/08/2013	9.99	14.37	-	16	5.82	264.8	20.3	0.3	35.7	<1	<1	<1	<2	<1	ND	<10	<50	<100			Slightly cloudy, no odour
INING	4/12/2014	-	-		-						-	ampled										
	3/03/2015 11/06/2015	9 9.57	14.37 14.37	-	20	4.87	177.3 191.8	21.4 20.5	2.22 0.28	104.3 153.3	<1 <1	<1 <1	<1 <1	<1 <1	<2 <2	ND ND	<10 <10	<50 <50	<100 <100			Cleear, no odour Clear, no odour
	5/04/2017	9.57	- 14.37		0	J.40	191.0	20.5	0.28	103.3		ampled	1 11	1 11	1 42		1 <10	<u> </u>	100	1 <100		
					1																	•
	15/06/2006	-	-	-	- 10	-	-	-	-	-	1	5	2	150	170		370	1550	ND	ND (EQ		
	29/01/2008 17/03/2011	4.98	-	- 0	10 6	5.66 4.04	175.5 0.135	19.3 20.07	0.59	301 433.6*	<1 <1	<1 <1	<1 <1	<2 <2	<1 <1	ND ND	ND <10	ND <50	ND <100	<50 <100		No sheen, no odour Clear, becoming slightly turbid after 4L pruge. No odou
	21/08/2013	6.11	7.88	-	8.5	5.07	84.3	19.2	1.16	-6.1	<1	<1	<1	<2	<1	ND	<10	<50	<100			Clear, no odour
MW9	4/12/2014	-	-									ampled			1	1						
	4/03/2015	4.33	7.87	-	9	4.69	139.6	19.3	3.85	170.2	<1	<1	<1	<1	<2	ND	<10	<50	<100			Clear, no odour
	10/06/2015	5.79	-	-	4	5.02	136.8	19.3	2.1	201	<1	<1	<1	<1	<2	ND	<10	<50	<100			Pale brown, cloudy
	6/04/2017	4.17	6.32	0	5	4.95	140.5	19.8	3.45	22.1	<1	<1	<1	<2	<1	<3	<20	<50	<100	<100	<100	Clear, no odour, no sheen
	13/06/2006	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	29/01/2008	1.03	-	-	22	5.24	80.3	22.8	0.73	273	<1	<1	<1	<2	<1	ND	ND	190	1780	80	2050	Turbid, yellow, HC odour
	16/03/2011	0.95	-	0	12	4.35	0	23.72	0	390.3*	8	2	10	19	3	22	44	<50	<100			Light orange with slight turbidity. Became clear in colo
MW10	20/08/2013 3/12/2014	1.145	2	-	5	5.46 6.36	69 84.3	15 25.1	0.4	-0.3 -26.6	<1 <1	<1 <1	<1 <1	<2 <2	<1 <1	ND ND	<10 <10	<50 <50	<100 <100			Clear, no odour Turbid, no odour
	3/03/2015	0.81	2.1	-	5	4.97	79.9	23.1	0.31	175.1	2	<1	<1	<2	<1	ND	12	<50	<100			Clear, no odour
	10/06/2015	1.27	-	-	6	6.78	81.3	15.4	0.39	-75	<1	1	<1	<2	<1	ND	<10	<50	<100			Brown, clear, no odour
	5/04/2017	0.76	2.11	0	10	5.05	88.3	22.2	1.52	-57	<1	<1	<1	<1	<1	<3	<20	<50	<100	<100	<100	Clear, no odour, no sheen
	14/06/2006	-	-	-	-		-	-	-		12200	12200	2190	5950	2950	8900	46200	6800	ND	ND	6800	
	29/01/2008	2.425	-	-	40	6.85	330	22	1.06	189	4520	-	1810		2790		20600		ND			Strong HC odour
	16/03/2011	2.36	-	0	10	5.93	0.381	20.87	0	200.8*					310		7900					Slightly turbid with HC odour
MW11	22/08/2013	-	-	-							_	ould not l										
	4/12/2014 3/03/2015	2.805	5.8 5.88	-	13 12	6.35 6.29	368.4 316	19.9 21.2	0.92	-64.9 -130.2	<u>1100</u> 340	8 27	5 17	45 2	<1 160	45 162	2600 1500	1200 890	<100 <100		1200 890	Turbid, HC odour Clear, HC odour
	10/06/2015	2.19	- 5.00	-	6	6.49	339	21.2	0.33	-130.2	640	5	4	<1	31	31	2000	1000	<100		-	
	6/04/2017	2.19	5.58	0	7.5	6.46	335.3	21.2	0.54	-209	110	24	<10	130	<10	130	970	490	<100			
	14/06/2006 30/01/2008	- 5.16	-	-	- 18	6.74	- 341	- 22.1	- 2.14	- 134	8850 4620	7380 4710	1510 1500		2080 2200		28700 18300	6490 2400	ND ND	ND ND	6490 2400	Clear, colourless, HC odour
	17/03/2011	4.21	-	0	5	5	244	21.2	0.07	153*	520	130	110		120		940	810	100	<100		Light brown and turbid with strong HC odour. Became
	20/08/2013	4.815	6.5	-	6.5	6.36	324.5	20.6	0.23	-142.7	<u>1500</u>	32	560	880	3	883	5000	2100	150	<100	2300	Clear, HC odour
MW12	4/12/2014	-	-		0	6.12	200 5	22.0	0.44	127.0	-	ampled	470	22	720	742	2400	2200	-100	-100	2200	
	3/03/2015 10/06/2015	3.325 4.64	6.6 6.6	-	9	6.12 6.49	308.5 352.9	22.8 21.5	0.44	-127.6 -138	550 930	97 13	470 480	22	720 590	742 592	3400 4300	2200 2700	<100 <100		-	Clear, HC odour Clear, HC odour
	5/04/2017	3.14	6.51	376	10	6.37	291.4	23.6	0.72	-93.5	190	27	250	280	20	300	1800	750	<100			Clear, low HC odour, no sheen
	DUP1	3.14	6.51	376	10	6.37	291.4	23.6	0.72	-93.5	160	50	290	230	57	290	2100	480	<100	<100	480	Clear, low HC odour, no sheen
	14/05/2005	-	-	-	-	-	-	-	-	1	2050	0410	010	2770	1410	F100	18500	6790	ND		C700	
	14/06/2006 30/01/2008	12.76	-	-	50	6.49	317	20.7	0.1	- 181	3650 1160	8410 5020	910 1210	3770 4280	_		15900	2940	ND ND	ND ND	6790 2940	Clear, HC odour, sheen
	16/03/2011	13.8	-	0	5	4.7	216	21.3	0.07	213*	18	58	13	49	26	75	220	120	<100			HC odour
MW13	20/08/2013	13.78	19.2	-	16	5.49	299.1	20.6	0.41	-147.6		800	430	1100	480	1580	4300	1200	<100	<100	1300	Slightly cloudy, HC odour
	4/12/2014	-	-		22	5 22	246.4	21.4	E 24	68.2		ampled	20	21	64	05	C10	220	-100	-100	220	
	3/03/2015 11/06/2015	11.435 13.22	19.4 19.4	-	22 6	5.22 5.61	346.4 335	21.4 20.6	5.24 0.78	-68.3 -79	13 38	25 72	30 61	21 50	64 120	85 170	610 1200	330 1100	<100 130	<100 <100		Clear, no odour Clear, HC odour
	5/04/2017	-	-									ampled			1 - 10							·
	4 4 10 - 1																					
	14/06/2006 30/01/2008	- 13.18	-	-	- 40	- 6.79	- 338	- 21.5	- 1.01	- 136	17300 22400		2350 3380		_	12050 18650		11500 7000	250 240	ND 100	11750	
	16/03/2011	13.18	-	- 0	40	4.89	338 74	21.5	0.08	136	3500	6900	980	3500	_		15000	5900	540	<100	7340 6490	
MW14	21/08/2013	14.28	17.206	-	13	6.44	331.9	20.6	0.5	-165.4	10000	16000	2300		_	12000		5100	440	<100		Clear, strong HC odour
14110114	4/12/2014	15.325	17.3	-	10	6.46	371.6	21.3	1.81	-78.7	11000	12000	2400	9400		13200		76000	5100	460	-	Slightly cloudy, strong HC odour
	2/03/2015	11.77	17.3	-	18 6	6.24	396.5	21.5 20.7	1.65	-142.9	<u>9400</u>	15000	2700	4300	_	14200		7400	290	<100		Clear, strong HC odour
	11/06/2015 6/04/2017	- 12.54	17.3 17.26	- 314	30	6.45	348	- 20.7	0.25	-141	7000 6600	8600 7200	1600 2300		_	7900 12000	38000 44000	7400 5500	420 100	<100 <100	7820	Cloudy, HC odour Clear, moderate HC odour, light sheen
	01012011	1 12.34	11.20	1 314	1 30	1	1	1	1	1	0000	1200		0000	3000		1.4000	3300	1 100	1 .100	3000	

ents	
dour.	
olour after 4L purged. No odour.	
oloui altei 41 puigeu. No ououi.	
me clear after 3L purged.	

											Cui	rrent an			nound	water	Jaid					1
		<u> </u>	1	1	Fie	eld Parame	ters	1	1	1		1	BT	EX				TRH	- NEPM	1999	-	Comment
		Ms mbTOC	Total well depth	Did	Purge volume	<u>ң</u> pH units	<mark>잂</mark> uS/cm	⊃。	Q mg/L	er mV	eus Beuzene μg/L	Dolucene μg/L	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	Xylene (m & p) ۲	Xylene (o) Xylene (o)	Xylene Total	T/8t T/8t	T/8t/ C10 - C14 Fraction	C15 - C28 Fraction	ר29 - C36 Fraction	편 전 고10 - C36 (Sum of Total)	- Observations
DR		-	-	-	-	-	-	-	-	-	1	1	1	1-2	1-2	3	10-20	50	100	100	100	-
HMRC ADW 2011		-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
EPM 2013 GIL Dri HMRC Recreatior	-	-	-	-	-	-	-	-	-	-	1 10	800 8000	300 3000	-	-	600 6000	-	-	-	-	-	
EPM 2013 Ground		-	-	-	-	-	-	-	-	-	800	-	-	-	-	-	-	-	-	-	-	
IEPM 2013 Ground	dwater HSL C	-	-	-	-	-	-	-	-	-	NL	-	-	-	-	-	-	-	-	-	-	
NZECC 2000 FW 9		-	-	-	-	-	-	-	-	-	950	180	80	200	350	550	-	-	-	-	-	
NEPM 2013 GIL Fre Netherlands (2000)		-	-	-	-	-	-	-	-	-	950	-	-	-	350	-	-	-	-	-	- 600	
(2000)	/																				000	4
ield_ID	Sampled_Date																					
	15/06/2006	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	29/01/2008 17/03/2011	5.025 6.06	-	- 0	22	6.01 4.03	210 0.188	19.6 20.13	0.72	179 439*	<1	<1 <1	<1 2	<2 <2	<1 <1	ND ND	ND <10	ND <50	ND <100	ND <100	ND ND	No sheen, no odour Clear becoming slightly turbid. No odour.
	21/08/2013	5.69	7.6	-	11	6.5	383.9	18.7	0.96	-52.9	<1	<1	<1	<2	<1	ND	<10	<50	<100			Clear, no odour
MW15	4/12/2014	-	-								Not s	ampled										
	3/03/2015	4.06	7.6	-	12	5.2	129.6	19.5	4.56	104.5	2	<1	2	<1	2	2	<10	<50		<100		Clear, no odour
	10/06/2015 6/04/2017	3.99	7.6	- 0	6	5.53 4.95	193 163.4	17.9 19.5	1.21 3.7	-6.9	<1 <1	<1 <1	<1 <1	<1 <2	<2 <1	ND <3	<10 <20	<50 <50	<100 <100			Brown, turbid, no odour Grey, turbid, no odour, no sheen
	14/06/2006	-	-	-	-	-	-	-	-	-	<u>10600</u>	14000			2760		41700	6810	ND	ND	6810	
	30/01/2008 16/03/2011	14.01	-	- 0	40	6.94 4.82	385 257	21.1 20.6	0.8	146 173*	7240 9400	12900 11000	1460 2300	5050 6800		7480 10800	31000 46000	2250 1200	ND <100	ND <100		HC odour, turbid Light brown with low turbidity and a HC odour. Become
	21/08/2013	15.1	18	-	8	6.52	330.1	20.0	1.29	-178.6	3200			4300		6100	21000		110	<100		· ·
MW16	4/12/2014	-	-									ampled										
	2/03/2015	12.58	18	-	18 6	6.26	350.7	21.6	0.3	-120	<u>1900</u> 1800	2100 2400	420 570			2160	9000	2400				Clear, very slight odour
	11/06/2015 5/04/2017	- 14.4	- 18	-	0	6.42	303.2	20.4	0.21	-154		ampled	570	950	2200	3130	12000	4000	100	<100	4100	Pale brown, cloudy, HC odour
	15/06/2006 30/01/2008	- 14.575	-	-	- 15	- 6.26	- 1820	- 21.6	- 2.28	- 101	5940 2930	8560 1250	2090 1280	7130	2800 1510		27400 10600	4960 2020	ND ND	ND ND	4960 2020	
	16/03/2011	14.373	-	0	8	4.74	37	23.9	0.14	181 173*	96	8	27	37	1310	3040	10000	520	<100			Slight HC odour Light brown and turbid with strong HC odour
MW17	20/08/2013	15.7	17.1	-	7.5	5.01	225.4	19.6	0.86	-122.6	130	2	22	10	2	12	470	400	<100			Slightly cloudy, HC odour
	4/12/2014 2/03/2015	- 13.29	-	-	12	F 15	212.2	21.2	0.02	20	Not s	ampled	00	63	280	242	1000	000	-100	<100	800	Clean aliabt adam
	11/06/2015	15.29	17.1 17.1	-	12	5.15 6.34	213.3 258.3	21.2	0.83	-29 -151	140	41	90 41	3	280	343 25	1600 720	890 700		<100 <100		Clear, slight odour Pale brown, turbid, HC odour
	5/04/2017	-	-								Not s	ampled										
	14/06/2006	-	-	-	-	-	-	-	-	-	4940	2830	850	3220	1160	4380	13000	7540	ND	ND	7540	
	30/01/2008	6.075	-	-	30	6.99	417	22.9	0.9	129	905	204	434	931	290	1221	4980	3810	ND	ND	3810	HC odour, sheen, clear
	17/03/2011	6.13	-	0	6	5.12	261	20.8	0.1	29*	76	5	26	32	2	34	210	520		<100		
MW18	20/08/2013 4/12/2014	7.055	8.15	-	8	5.88	353.8	21	0.27	-122.2	290	6 ampled	150	110	<1	110.5	1800	970	130	<100	1150	Slightly cloudy, HC odour
	3/03/2015	5.61	8.9	-	10	6.3	346.6	21.4	0.34	-160.6	140	28	62	3	59	62	1000	630	<100	<100	630	Clear, slight HC odour
	11/06/2015	6.6	8.9	-	6	6.28	268.1	21.3	0.28	-74	130	4	59	<1	41	41	750	480		<100		
	5/04/2017	4.58	8.93	0	4	6.42	301.7	21.8	1.51	-109.1	15	<1	3	3	<1	3	320	70	<100	<100	<100	Clear, no odour, no sheen
	15/06/2006	-	-	-	-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	30/01/2008	3.58	-	-	10.5	5.56	203.7	21.3	0.94	298	<1	<1	2	3	2	5	ND	ND	ND	ND	ND	Brown, turbid, no odour or sheen
	17/03/2011 22/08/2013	-	-									not locate not locate										
MW19	4/12/2014	4.09	5.4	-	3.5	5.91	79.4	19.3	3.79	13.3	<1	<1	<1	<2	<1	ND	<10	<50	<100	<100	ND	Turbid, very slight odour
	4/03/2015	-	-									not locate										
	11/06/2015 5/04/2017	-	-									not locate ampled										
	3/04/2017		-								NULS	ampieu										
	14/06/2006	-	-	-	-	-	-	-	-	-	<u>1390</u>	62	160	360	55	415	2080	410	ND	ND	410	
	30/01/2008	2.925	-	-	10	5.31	155.6	21.7	0.47	260	<1	<1	<1	16	8	24	50	ND	ND 1100	ND	ND 210	Brown, turbid, sheen
	17/03/2011 20/08/2013	2.81	5.8	0	8	4.85 5.76	187 208.3	20.71	1.34 0.33	239.4*	21 6	3	31 5	110 31	4 <1	114 31.5	180 100	110 <50	<100	<100 <100		Clear with slight HC odour Clear-slightly cloudy, slight HC odour
MW20	3/12/2014	3.425	5.8	-	8	5.99	233.1	19.2	0.72	-4.6	<1	<1	1	8	<1	8	36	71	520	<100		Turbid, no odour
	3/03/2015	2.62	5.8	-	9	5.07	110.9	21.2	0.43	62.5	2	<1	1	<1	5	5	17	<50	<100	<100	ND	Clear, no odour
	10/06/2015 6/04/2017	3.15	- 5.8	- 0	6	5.61 5.23	122.7 118.4	19.8 21.8	0.37	-36 -16.7	6 <1	<1 <1	10	<1 <2	54 <1	54 <3	130 <20	82 <50	<100 <100	<100 <100	82 <100	Clear, no odour Clear, no odour, no sheen
	0,01,2027	2.05	0.0			0.20	11011	21.0	1.10	1000							-20		-100	1.100	1 200	
		-	-	-	-	-	-	-	-	-	190	94	490	2590			6070	9200	ND	ND	9200	
	14/06/2006	_	1	1			1 1 7 5	21	0.95	309	1370	196	731	2020	830	2850	7040	6430	ND	ND	6430	Brown, turbid, sheen, HC odour
	30/01/2008	5.325	-	- 0	30 10	5.9	125 0.176					<1	27	<2	<1	ND	420	690	<100	<100	790	
AW/21		_		- 0 -	30 10 4	5.9 4.77 5.66	0.176	20.77 19.7	0	272.8* -83.9	250 <1	<1 <1	27 3	<2 <2	<1 <1	ND ND	420 140	690 400	<100 <100	<100 <100		Clear becoming turbid after 2L purged. Slight HC odour Clear, slight HC odour
MW21	30/01/2008 17/03/2011 20/08/2013 4/12/2014	5.325 5.4 5.795 -	- 6.9 -	-	10 4	4.77 5.66	0.176	20.77 19.7	0	272.8* -83.9	250 <1 Not s	<1 ampled	3	<2	<1	ND	140	400	<100	<100	500	Clear becoming turbid after 2L purged. Slight HC odour Clear, slight HC odour
MW21	30/01/2008 17/03/2011 20/08/2013	5.325 5.4 5.795	- 6.9	0	10	4.77	0.176	20.77	0	272.8*	250 <1	<1							<100 <100	<100	500 73	Clear becoming turbid after 2L purged. Slight HC odour

4-	
ts	
nes clear after 4L purged.	
nes clear alter 4L purgeo.	
Г.	
и.	

					Fie	eld Parame	eters						BT	TEX				TRH	NEPM	1999		Comments
		SWL	Total well depth	QI	Purge volume	H	2	Temp	0	٩x	Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	C6 - C 9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 (Sum of Total)	Observations
		mbTOC	mbTOC	ppm	L	pH units	uS/cm	°C	mg/L	mV	μg/L	μg/L	μg/L		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	-
LOR		-	-	-	-	-	-	-	-	-	1	1	1	1-2	1-2	3	10-20	50	100	100	100	-
NHMRC ADW 20)11	-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
NEPM 2013 GIL	Drinking Water	-	-	-	-	-	-	-	-	-	1	800	300	-	-	600	-	-	-	-	-	
NHMRC Recreat	tional 2008	-	-	-	-	-	-	-	-	-	10	8000	3000	-	-	6000	-	-	-	-	-	
NEPM 2013 Grou	undwater HSL A/B	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	800	<u>-</u>	-	<u>-</u>	<u>-</u>	-	<u>-</u>	<u>-</u>	-	<u>-</u>	<u>-</u>	
NEPM 2013 Grou	undwater HSL C	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	NL	-	-	<u>-</u>	-	<u>-</u>	<u>-</u>	<u>-</u>	-	<u>-</u>	-	
ANZECC 2000 FW	N 95%	-	-	-	-	-	-	-	-	-	950	180	80	200	350	550	-	-	-	-	-	
NEPM 2013 GIL F	Freshwater	-	-	-	-	-	-	-	-	-	950	-	-	-	350	-	-	-	-	-	-	
Netherlands (200	00)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	600	
Field_ID	Sampled_Date																					
	14/06/2006	-	-	-	-	-	-	-	-	-	<u>2960</u>	260	140	280	130	410	3910	1050	ND	ND	1050	
	30/01/2008	9.15	-	-	40	6.44	334	18.9	0.9	154	<u>1720</u>	456	395	686	378	1064	4130	780	ND	ND	780	Clear, HC odour, no sheen
	17/03/2011	9.23	-	461	6	4.99	227	21	0.05	112*	120	9	42	52	5	57	260	250	<100	<100	350	Light brown turbid with slight HC odour
MW22	20/08/2013	10.27	13	-	11	5.55	208.9	20.6	0.39	-119.4	16	<1	14	6	<1	6.5	140	140	<100	<100	240	Clear, very slight HC odour
1010022	4/12/2014	-	-									Not samp	oled									
	3/03/2015	7.66	13	-	13	5.61	176.7	20.9	1.43	-51.9	<1	<1	<1	<1	<2	ND	35	<50	<100	<100	ND	Clear, slight HC odour
	11/06/2015	9.72	13	-	8	6.27	214.1	19.9	0.67	-93	20	<1	16	<1	3	3	170	160	<100	<100	160	Clear, HC odour
	5/04/2017	-	-								Not s	ampled										
	14/06/2006	-	-	-		-	-	-	-		9870	1750	190	660	350	1010	13900	2030	ND	ND	2030	
	30/01/2008	12.17	-	-	40	7	360	19	0.23	137	7340	570	223	202	130		9870	600	ND	ND		HC odour
	17/03/2011	12.18	-	72.4	7	5.1	284	18.5	0.09	114*	2500	750	180	300	180	480	3300	720	130	<100		Clear with black suspended solids. Strong HC odour.
	20/08/2013	13.22	17.82	-	18.5	5.34	364.5	20.1	0.75	-88.7	4600	1100	600						180		-	Slightly cloudy, strong HC odour
MW23	4/12/2014	-		-	10.5	5.54	504.5	20.1	0.75	-00.7		ampled	000	1000	210	1210	11000	1500	100	100	1/30	Signity cloudy, strong ne odour
	2/03/2015	10.77	17.9	-	20	6.42	410.1	22	0.82	-131.3	2000	110	210	14	280	294	4000	690	<100	<100	690	Slightly cloudy, slight odour
	11/06/2015	12.67	17.91	-	6	6.68	353.1	20.5	0.02	-92	3300	1000	440		970				<100			Brown, turbid, HC odour
	5/04/2017	-	-			0.00	555.1	20.5	0.25	52		ampled	140	150	570	1100	0700	1 450	100	100		
	5/04/2017			1							1401.3	ampica										
	15/06/2006	-	-	-	-	-	-	-	-	-	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	30/01/2008	5.89	-	· .	25	5.41	151.1	20.4	1.06	355	<1	<1	<1	<2	<1	ND	ND	ND	ND	ND	ND	Clear, colourless, no odour or sheen
1	17/03/2011	6.04	-	0	6	3.72	151.1	14.5	0.07	488*	5	4	4	12	6	18	25	<50	<100	<100	<250	
	20/08/2013	6.5	8.9	-	10	5.21	133.2	20.2	0.07	28.2	<1	<1	<1	<2	<1	ND	<10	<50	<100	<100		Clear, no odour
MW24	4/12/2014				10	1 3.21	133.2	20.2	0.5	20.2	1	ampled	1 11		1 14	1.10	1 10		1 100	1 100	1.10	
	4/03/2015	5.47	8.9	-	10	5.16	138.1	20.9	1.16	50.1	<1	<1	<1	<1	<2	ND	<10	<50	<100	<100	ND	Clear, no odour
	11/06/2015	6.44	8.92		8	6.41	220.5	20.3	0.32	37	<1	<1	<1	<1	<2	ND	<10	1500	<100	<100		
	5/04/2017	- 0.44	- 0.92	-	0	0.41	220.5	20.0	0.52	1 37	1	ampled	1 11	1 11	1 ~2		1 10	1 1300	1 /100	1 100	1500	
L	3/04/2017			1								· ·										1


* ORP field results converted to Standard Hydrogen Electrode (SHE) readings by adding 199 mV to each field value - TPS 90FLMV Water Quality Meter

ND = Non Detect

ND = Non Detect EC = Electrical Conductivity RP = Redox Potential DO = Dissolved Oxygen mbTOC = metres below top of casing

SWL = Standing water level

Coffs Harbour City Council Coramba

Coramba (Orara River Water Monit						tre (ug/L)
Location No.	Sample Location	< symbol indi Date Sampled	cates "less th Benzene	an", i.e. <25 Toluene	is less than 2 Ethyl Benzene	25 microgra Xylene	TPH C6 - C
4	Upstream of footbridge (end Martin Street, Coramba)	3/01/2007 20/02/2007	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
	(end Martin Street, Coramba)	14/03/2007	<1	<1	<1	<2	<25
		24/04/2007	<1	<1	<1 <1	<2	<25
		27/06/2007 31/07/2007	<1 <1	<1 <1	<1	<2 <2	<25 <25
		27/08/2007	<1	<1	<1	<2	<25
		24/09/2007 22/10/2007	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		12/12/2007	<1	<1	<1	<2	<25
		23/01/2008 18/02/2008	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		17/03/2008	<1	<1	<1	<2	120
		28/04/2008 26/05/2008	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		25/06/2008	<1	<1	<1	<2	<25
		23/07/2008	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		15/09/2008	<1	<1	<1	<2	<25
		27/10/2008 24/11/2008	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		8/12/2008	<1	<1	<1	<2	<25
		27/01/2009 23/02/2009	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		25/03/2009	<1	<1	<1	<2	<25
		20/04/2009	<1	<1	<1 <1	<2 <2	<25 <25
		27/04/2009 18/05/2009	<1 <1	<1 <1	<1 <1	< <u>2</u> <2	<25 <25
		15/06/2009	<1	<1	<1	<2	<25
		28/07/2009 24/08/2009	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		21/09/2009	<1	<1	<1	<2	<25
		21/10/2009 17/11/2009	<1 <1	<1 <1	<1 <1	<2 <2	<25 <20
		14/12/2009	<1	<1	<1	<2	<20
		18/01/2010 16/02/2010	<1 <1	<2 <2	<2 <2	<2 <2	<20 <20
		15/03/2010	<1	<1	<1	<2	<20
		28/04/2010	<1	<1	<1	<2	<25
		25/05/2010 22/06/2010	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		19/07/2010	<1	<1	<1	<2	<25
		16/08/2010 27/09/2010	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		26/10/2010	<1	<1	<1	<2	<25
		23/11/2010	<1	<1	<1	<2	<25
		21/12/2010 24/01/2011	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		21/02/2011	<1	<1	<1	<2	<25
		21/03/2011 19/04/2011	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		17/05/2011	<1	<1	<1	<2	<25
		27/06/2011 25/07/2011	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		22/08/2011	<1	<1	<1	<2	<25
		19/09/2011	<1	<1	<1	<2	<25
		18/10/2011 29/11/2011	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		12/12/2011	<1	<1	<1	<2	<25
		16/01/2012 28/02/2012	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		27/03/2012	<1	<1	<1	<2	<25
		23/04/2012	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		19/06/2012	<1	<1	<1	<2	<25
		16/07/2012 27/08/2012	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		24/09/2012	<1	<1	<1 <1	<2 <2	<25
		22/10/2012	<1	<1	<1	<2	<25
		19/11/2012 17/12/2012	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		22/01/2013	<1	<1	<1	<2	<25
		19/02/2013 19/03/2013	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		16/04/2013	<1	<1	<1	<2	<25
		14/05/2013 24/06/2013	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		22/07/2013	<1	<1	<1	<2	<25
		21/08/2013 17/09/2013	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		22/10/2013	<1	<1	<1	<2	<25
		12/11/2013	<1	<1 <1	<1 <1	<2 <2	<25 <25
		10/12/2013 14/01/2014	<1 <1	<1 <1	<1 <1	< <u>2</u> <2	<25 <25
		12/02/2014	<1	<1	<1	<2	<25
		25/03/2014 22/04/2014	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		20/05/2014	<1	<1	<1	<2	<25
		17/06/2014 15/07/2014	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		12/08/2014	<1	<1	<1	<2	<25
		18/11/2014	<1	<1	<1	<2	<25
		16/12/2014 20/01/2015	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		17/02/2015	<1	<1	<1	<2	<25
		16/03/2015 5/05/2015	<1 <1	<1 <1	<1 <1	<2 <2	<25 <25
		26/05/2015	<1 <1	<1 <2	<2	<2 <2	<25 <20
		24/06/2015	<1	<2	<2	<2	<20

Looution No.Sample containeDelay sample with backbase of hereDelay	Coramba	Orara River Water Monito	ring	all resu	ılts in mi	crogram	s per lit	re (ug/L)	
DescriptionDescripti	Location No.	Sample Location		1		Ethyl		ams per litre TPH C6 - C	
B Opticals bank Stant bank bank bank bank bank bank bank bank	Location No.	Sample Location	Date Sampled	Benzene	Toluene	-	Xylene	TPH C6 - C9	
aliacet to account of a set of a s	В	Outside bund	3/01/2007	<1	<1		<2		
Idensisteam from Site A) 2404/2007 35 5.5 1.2 I 2409/2007 -1 -1 -1 5.3 1.0 2409/2007 -1 -1 -1 5.3 1.0 2409/2007 -1 -1 -1 -1 -2 2409/2008 -1 -1 -1 -2 -2 2409/2008 -1 -1 -1 -2 -2 1000/2008 -1 -1 -1 -2 -2 1000/2008 -1 -1 -1 -2 -2 2401/2008 -1 -1 -1 -2 -2 1000/2008 -1 -1 -1 -2 -2 2401/2008 -1 -1 -1 -2 -2 2401/2008 -1 -1 -1 -2 -2 2401/2008 -1 -1 -1 -2 -2 2400/2008 -1 -1		(Sample site in backwater of river	20/02/2007		-				
Image: state of the s									
227022007 41 41 43 22702007 41 41 43 42 22702007 41 41 43 42 22702008 41 41 43 42 22702008 41 41 42 42 22702008 41 41 42 42 22702008 41 41 42 48 22702008 41 41 42 48 22702008 41 41 42 48 22702008 41 41 42 48 22702008 41 41 42 48 22702008 41 41 42 48 22702009 16 41 42 48 22020200 41 41 42 44 22020200 41 41 42 44 22020200 41 41 42 44 22020200 41			27/06/2007	<1	<1	<1	<2		
2408/2007 41 41 43 1201/2008 41 41 43 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 40 41 41 42 1201/2008 40 41 41 42 1201/2008 40 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 42 1201/2008 41 41 41 43 1201/2008 41 41 43 44 1201/2008 41 41 42 42 1201/2008 41			31/07/2007		-				
12/12/2007 -C1			24/09/2007	<1		<1	<2		
2200000000000000000000000000000000000					-				
19022000				-	-	-			
28042008 -1 -1 -1 -2 43 28057000 -1 -1 -2 43 28057000 -1 -1 -2 -4 18052000 -1 -1 -2 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 2102000 -1 -1 -1 -2 21092000 -1 -1 -1 -2 21092000 -1 -1 -1 -2 21092000 -1 -1 -1 -2 21092000 -1 -1 -1 -2 21092000 <td></td> <td></td> <td>18/02/2008</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>			18/02/2008		-	-			
$ \begin{vmatrix} 2805200 \\ 2807200 \\ -1 \\ -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$					-				
			26/05/2008		<1	2	4.8		
$ \begin{vmatrix} 10002000 \\ 100020$				-	-				
$ \begin{vmatrix} 27/10/2008 & -1 & -1 & -1 & -2 \\ 21/12/2008 & -1 & -1 & -1 & -2 \\ 21/20/2009 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2010 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2011 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & -2 \\ 21/20/2012 & -1 & -1 & -1 & $			18/08/2008						
$ \begin{vmatrix} 24112008 & <1 & <1 & <1 & <2 \\ 8122008 & <1 & <1 & <1 & <2 \\ 22008 & <1 & <1 & <1 & <2 \\ 22007000 & 11 & <1 & <1 & <2 \\ 2007000 & 11 & <1 & <1 & <2 \\ 2007000 & <1 & <1 & <1 & <2 \\ 2007000 & <1 & <1 & <1 & <2 \\ 2007000 & <1 & <1 & <1 & <2 \\ 2007000 & <1 & <1 & <1 & <2 \\ 2007000 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <2 \\ 200700 & <1 & <1 & <1 & <$			15/09/2008		-				
$ \begin{vmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$									
23022000 <th< td=""><td></td><td></td><td>8/12/2008</td><td><1</td><td><1</td><td><1</td><td><2</td><td></td></th<>			8/12/2008	<1	<1	<1	<2		
2003/2009					-	-			
2004/2009 11 -C1 -5.1 16 2004/2009 -C1 -C1 -1.3 2.5 2009/2009 -C1 -C1 -C1 -2.5 2009/2009 -C1 -C1 -C1 -C2 2009/2009 -C1 -C1 -C1 -C2 21/10/2009 -C1 -C1 -C1 -C2 21/10/2009 -C1 -C1 -C1 -C2 10/11/2009 -C1 -C1 -C1 -C2 10/12/2009 -C1 -C1 -C1 -C2 2006/2010 -C1 -C1 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td> </td></td<>					-				
$ \begin{vmatrix} 10052000 & <1 & <1 & <1 & <1 & <1 & <1 & <1 &$			20/04/2009	11	<1	5.1	16		
$ \begin{vmatrix} 1500 - 2000 + 0.1 \\ 20072000 + 0.1 \\ - 0.$									
$ \begin{vmatrix} 20072009 & <1 & <1 & <2.4 & 3.5 \\ 20082009 & <1 & <1 & <1 & <2 \\ 21082009 & <1 & <1 & <1 & <2 \\ 21082009 & <1 & <1 & <1 & <2 \\ 21012000 & <1 & <1 & <1 & <2 \\ 21012000 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172010 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172011 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172012 & <1 & <1 & <1 & <2 \\ 20172013 & <1 & <1 & <1 & <2 \\ 20172013 & <1 & <1 & <1 & <2 \\ 20172013 & <1 & <1 & <1 & <2 \\ 20172013 & <1 & <1 & <1$			15/06/2009	<1	-	<1			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			28/07/2009	13	-		3.5		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{vmatrix} $			21/10/2009				<2		
			17/11/2009						
$ \begin{vmatrix} 16022010 & 14 & 42 & 42 & 16 \\ 15032010 & 41 & 41 & 41 & 42 \\ 28042010 & 41 & 41 & 41 & 42 \\ 28052010 & 51 & 61 & 14 & 3 \\ 22052010 & 41 & 41 & 41 & 42 \\ 18072010 & 41 & 41 & 41 & 42 \\ 18072010 & 41 & 41 & 41 & 42 \\ 27082010 & 41 & 41 & 41 & 42 \\ 27082010 & 41 & 41 & 41 & 42 \\ 27082010 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 27082011 & 41 & 41 & 41 & 42 \\ 28082011 & 41 & 41 & 41 & 42 \\ 28082011 & 41 & 41 & 41 & 42 \\ 28082011 & 41 & 41 & 41 & 42 \\ 28082011 & 41 & 41 & 41 & 42 \\ 28082012 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082013 & 41 & 41 & 41 & 42 \\ 28082014 & 41 & 41 & 41 & 42 \\ 28082014 & 41 & 41 & 41 & 42 \\ 28082015 & 41 & 41 & 41 & 42 \\ 28082015 & 41 & 41 & 41 & 42 \\ 28082015 & 41 & 41 & 41 & 4$				-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			16/02/2010	14	<2	<2	16		
$ \begin{vmatrix} 25052010 & 35 & 1.6 & 1 & 14.3 \\ \hline 220522010 & <1 & <1 & <1 & <2 \\ \hline 1007/2010 & <1 & <1 & <1 & <2 \\ \hline 2709/2010 & 2.5 & <1 & <1 & <2 \\ \hline 2709/2010 & 2.5 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2010 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2011 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2012 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ \hline 2805/2013 & <1 & <1 & <1 & <2 \\ $						-			
$ \begin{vmatrix} 1997/2010 < <1 < <1 < <1 < <2 \\ 1608/2010 < <1 < <1 < <1 < <2 \\ 2709/2010 < 2.5 < <1 < <1 < <2 \\ 2311/2010 < <1 < <1 < <1 < <2 \\ 2311/2010 < <1 < <1 < <1 < <2 \\ 2311/2010 < <1 < <1 < <1 < <2 \\ 2311/2010 < <1 < <1 < <1 < <2 \\ 2411/2010 < <1 < <1 < <1 < <2 \\ 2411/2010 < <1 < <1 < <1 < <2 \\ 2411/2010 < <1 < <1 < <1 < <2 \\ 2411/2010 < <1 < <1 < <1 < <2 \\ 2401/2011 < <1 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 210/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2011 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2012 < <1 < <1 < <1 < <2 \\ 200/2013 < <1 < <1 < <1 < <2 \\ 200/2013 < <1 < <1 < <1 < <2 \\ 200/2013 < <1 < <1 < <1 < <2 \\ 200/2013 < <1 < <1 < <1$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-	-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						-			
$ \begin{vmatrix} 23/11/2010 < 1 < 1 < 1 < 2 \\ 21/12/2010 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 21/02/2011 < 1 < 1 < 1 < 2 \\ 27/05/2011 < 2.1 < 1 & 2.1 < 5 \\ 27/05/2011 < 1 & 2.1 < 1 & 2.1 \\ 21/05/2011 < 1 & 1 & 1 < 1 & 2 \\ 22/05/2011 < 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 < 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 < 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 < 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2011 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2012 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2013 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2014 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2014 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2014 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2014 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 1 & 1 & 2 \\ 22/05/2015 & 1 & 1 & 2 & 2 \\ 22/05/2015 & 1 & 1 & 2 & 2 \\ 22/05/2$			27/09/2010		-				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			21/12/2010						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			24/01/2011		-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			19/04/2011						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-		-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			22/08/2011		<1	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			12/12/2011						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			27/03/2012		-	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			16/07/2012	<1	<1	<1	<2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			22/10/2012	<1	<1	<1	<2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			19/11/2012						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			19/02/2013				<2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			14/05/2013	<1	<1	<1	<2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-		<u> </u>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			17/09/2013	<1	<1	<1	<2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			10/12/2013						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			14/01/2014						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-		-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			22/04/2014						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20/05/2014						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			12/08/2014	<1	<1	<1	<2		
20/01/2015 N/A N/A N/A N/A 17/02/2015 <1	· <u>····································</u>								
17/02/2015 <1									
5/05/2015 <1 <1 <2 26/05/2015 <1			17/02/2015	<1	<1	<1	<2		
26/05/2015 <1 <2 <2 <2 24/06/2015 <1									
24/06/2015 <1 <2 <2 <2									
29/03/2017 <1 <2 <2 <3 <20			24/06/2015	<1	<2	<2	<2		

Coramba (Orara River Water Monito		all resu	ılts in mi	crogram	s per lit	re (ug/L)
Location No.	Sample Location	< symbol indiDate Sampled	cates "less the Benzene	an", i.e. <25 Toluene	is less than 2 Ethyl Benzene	25 microgra Xylene	ams per litre TPH C6 - C9
Location No.	Sample Location	Date Sampled	Benzene	Toluene	Ethyl Benzene	Xylene	TPH C6 - C9
С	Former water supply location	3/01/2007	<1	<1	<1	<2	İ
-	(Adjacent original intake location	20/02/2007	<1	<1	<1	<2	
	for Coramba supply (in river))	14/03/2007	<1	<1	<1	<2	
	(downstream from Sites A & B)	24/04/2007 27/06/2007	1.4	<1 <1	<1 <1	<2 <2	
		31/07/2007	<1	<1	<1	<2	
		27/08/2007	<1	<1	<1	<2	
		24/09/2007 22/10/2007	<1 <1	<1 <1	<1 <1	< <u>2</u> 1.1	
		12/12/2007	<1	<1	<1	<2	
		23/01/2008	<1	<1	<1	<2	
		18/02/2008	<1	<1	<1	<2	
		17/03/2008 28/04/2008	<1 <1	<1 <1	<1 <1	<2 <2	
		26/05/2008	<1	<1	<1	<2	
		25/06/2008	<1	<1	<1	<2	
		23/07/2008 18/08/2008	<1 <1	<1 <1	<1 <1	<2 <2	
		15/09/2008	<1	<1	<1	<2	
		27/10/2008	<1	<1	<1	<2	
		24/11/2008	<1	<1	<1	<2	
		8/12/2008 27/01/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		23/02/2009	<1	<1	<1	<2	
		25/03/2009	<1	<1	<1	<2	
		20/04/2009 27/04/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		18/05/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		15/06/2009	<1	<1	<1	<2	
		28/07/2009	<1	<1	<1	<2	
		24/08/2009 21/09/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		21/10/2009	<1	<1	<1	<2	
		17/11/2009	<1	<1	<1	<2	
		14/12/2009 18/01/2010	<1 <1	<1 <2	<1 <2	<2 <2	
		16/02/2010	<1	<2	<2	<2	
		15/03/2010	<1	<1	<1	<2	
		28/04/2010	<1	<1	<1	<2	
		25/05/2010 22/06/2010	<1 <1	<1 <1	<1 <1	<2 <2	
		19/07/2010	<1	<1	<1	<2	
		16/08/2010	<1	<1	<1	<2	
		27/09/2010 26/10/2010	<1 <1	<1 <1	<1 <1	<2 <2	
		23/11/2010	<1	<1	<1	<2	
		21/12/2010	<1	<1	<1	<2	
		24/01/2011	<1	<1	<1	<2	
		21/02/2011 21/03/2011	<1 <1	<1 <1	<1 <1	<2 <2	
		19/04/2011	<1	<1	<1	<2	
		17/05/2011	<1	<1	<1	<2	
		27/06/2011 25/07/2011	<1 <1	<1 <1	<1 <1	<2 <2	
		22/08/2011	<1	<1	<1	<2	
		19/09/2011	<1	<1	<1	<2	
		<u>18/10/2011</u> 29/11/2011	<1	<1 <1	<1 <1	<2 <2	
		12/12/2011	<1	<1	<1	<2	
		16/01/2012	<1	<1	<1	<2	
		28/02/2012	<1	<1	<1	<2	
		27/03/2012 23/04/2012	<1 <1	<1 <1	<1 <1	<2 <2	
		21/05/2012	<1	<1	<1	<2	
		19/06/2012	<1	<1	<1	<2	
		16/07/2012 27/08/2012	<1 <1	<1 <1	<1 <1	<2 <2	
		24/09/2012	<1	<1	<1	<2	
		22/10/2012	<1	<1	<1	<2	
		19/11/2012	<1	<1	<1	<2	
		17/12/2012 22/01/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		19/02/2013	<1	<1	<1	<2	
		19/03/2013	<1	<1	<1	<2	
		16/04/2013 14/05/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		24/06/2013	<1	<1	<1	<2	
		22/07/2013	<1	<1	<1	<2	
		21/08/2013	<1	<1	<1	<2	
		17/09/2013 22/10/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		12/11/2013	<1	<1	<1	<2	
		10/12/2013	<1	<1	<1	<2	
		14/01/2014 12/02/2014	<1 <1	<1 <1	<1 <1	<2 <2	
		25/03/2014	<1	<1	<1	<2	İ
		22/04/2014	<1	<1	<1	<2	
		20/05/2014	<1	<1	<1	<2	
	+	17/06/2014 15/07/2014	<1 <1	<1 <1	<1 <1	<2 <2	
		12/08/2014	<1	<1	<1	<2	
		18/11/2014	<1	<1	<1	<2	
		16/12/2014	<1	<1	<1	<2	
		20/01/2015	<1 <1	<1 <1	<1 <1	<2 <2	
		16/03/2015	<1	<1	<1	<2	
		5/05/2015	<1	<1	<1	<2	
	1	26/05/2015	<1	<2 <2	<2 <2	<2	

Coramba (Orara River Water Monitor						re (ug/L)
Location No.	Sample Location	< symbol indi Date Sampled	cates "less the Benzene	an", i.e. <25 Toluene	is less than 2 Ethyl Benzene	25 microgra Xylene	ams per litre TPH C6 - C9
Location No.	Sample Location	Date Sampled	Benzene	Toluene	Ethyl Benzene	Xylene	TPH C6 - C9
D	150-200m Downstream (of site C)	3/01/2007	<1	<1	<1	<2	
_		20/02/2007	<1	<1	<1	<2	
		14/03/2007 24/04/2007	<1 <1	<1 <1	<1 <1	<2 <2	
		27/06/2007	<1	<1	<1	<2	
		31/07/2007	<1	<1	<1	<2	
		27/08/2007 24/09/2007	<1	<1	<1	<2	
		22/10/2007	<1 <1	<1 <1	<1 <1	<2 <2	
		12/12/2007	<1	<1	<1	<2	
		23/01/2008 18/02/2008	<1 <1	<1 <1	<1 <1	<2 <2	
		17/03/2008	<1	<1	<1	<2	
		28/04/2008	<1	<1	<1	<2	
		26/05/2008 25/06/2008	<1 <1	<1 <1	<1 <1	<2 <2	
		23/07/2008	<1	<1	<1	<2	
		18/08/2008	<1	<1	<1	<2	
		15/09/2008 27/10/2008	<1 <1	<1 <1	<1 <1	<2 <2	
		24/11/2008	<1	<1	<1	<2	
		8/12/2008	<1	<1	<1	<2	
		27/01/2009 23/02/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		25/03/2009	<1	<1	<1	<2	
		20/04/2009	<1	<1	<1	<2	
		27/04/2009 18/05/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		15/06/2009	<1	<1	<1	<2	
		28/07/2009	<1	<1	<1	<2	
		24/08/2009 21/09/2009	<1 <1	<1 <1	<1 <1	<2 <2	
		21/10/2009	<1	<1	<1	<2	
		17/11/2009	<1	<1	<1	<2	
		14/12/2009 18/01/2010	<1 <1	<1 <2	<1 <2	<2 <2	
		16/02/2010	<1	<2	<2	<2	
		15/03/2010	<1	<1	<1	<2	
		28/04/2010 25/05/2010	<1	<1 <1	<1 <1	<2 <2	
		22/06/2010	<1	<1	<1	<2	
		19/07/2010	<1	<1	<1	<2	
		16/08/2010 27/09/2010	<1 <1	<1 <1	<1 <1	<2 <2	
		26/10/2010	<1	<1	<1	<2	
		23/11/2010	<1	<1	<1	<2	
		21/12/2010 24/01/2011	<1 <1	<1 <1	<1 <1	<2 <2	
		21/02/2011	<1	<1	<1	<2	
		21/03/2011	<1	<1	<1	<2	
		19/04/2011 17/05/2011	<1 <1	<1 <1	<1 <1	<2 <2	
		27/06/2011	<1	<1	<1	<2	
		25/07/2011	<1	<1	<1	<2	
		22/08/2011 19/09/2011	<1 <1	<1 <1	<1 <1	<2 <2	
		18/10/2011	<1	<1	<1	<2	
		29/11/2011	<1	<1	<1	<2	
		12/12/2011 16/01/2012	<1 <1	<1 <1	<1 <1	<2 <2	
		28/02/2012	<1	<1	<1	<2	
		27/03/2012	<1	<1	<1	<2	
		23/04/2012 21/05/2012	<1 <1	<1 <1	<1 <1	<2 <2	
		19/06/2012	<1	<1	<1	<2	İ
		16/07/2012	<1	<1	<1	<2	
		27/08/2012 24/09/2012	<1 <1	<1 <1	<1 <1	<2 <2	<u> </u>
		22/10/2012	<1	<1	<1	<2	
		19/11/2012 17/12/2012	<1 <1	<1 <1	<1 <1	<2 <2	
		22/01/2013	<1	<1	<1	<2	
		19/02/2013	<1	<1	<1	<2	
		19/03/2013 16/04/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		14/05/2013	<1	<1	<1	<2	
		24/06/2013	<1	<1	<1	<2	
		22/07/2013 21/08/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		17/09/2013	<1	<1	<1	<2	
		22/10/2013	<1	<1	<1	<2	
		12/11/2013 10/12/2013	<1 <1	<1 <1	<1 <1	<2 <2	
		14/01/2014	<1	<1	<1	<2	
		12/02/2014	<1	<1	<1	<2	
		25/03/2014 22/04/2014	<1 <1	<1 <1	<1 <1	<2 <2	
		20/05/2014	<1	<1	<1	<2	
		17/06/2014	<1	<1	<1	<2	
		15/07/2014 12/08/2014	<1 <1	<1 <1	<1 <1	<2 <2	
		18/11/2014	<1	<1	<1	< <u>2</u>	
		16/12/2014	<1	<1	<1	<2	
		20/01/2015 17/02/2015	<1 <1	<1 <1	<1 <1	<2 <2	
		16/03/2015	<1	<1	<1	<2	
		5/05/2015	<1	<1	<1	<2	
	1	26/05/2015	<1	<2 <2	<2	<2	

Coramba	Orara River Water Monitori	all results in micrograms per litre (ug/L)											
		< symbol india	cates "less th	an", i.e. <25	is less than 2	25 microgra	ams per litre						
Location No.	Sample Location	Date Sampled	Benzene	Toluene	Ethyl Benzene	Xylene	TPH C6 - C9						
Additional dov	vnstream samples for reference												
downstream	500m Downstream	8/08/2006	<1	<1	<1	<2							
		24/08/2006	<1	<1	<1	<2							
downstream	Downstream 3km	27/07/2006	<1	<1	<1	<2							
	(near TOFOG sportsground)	8/08/2006	<1	<1	<1	<2							
		7/09/2006	<1	<1	<1	<2							
downstream	Adjacent Nana Glen Intake Location	27/07/2006	<1	<1	<1	<2							
	(downstream ~14km)	8/08/2006	<1	<1	<1	<2							
		24/08/2006	<1	<1	<1	<2							
		7/09/2006	<1	<1	<1	<2							
		3/01/2007	<1	<1	<1	<2							

Appendix C Table 4 **Groundwater RPD Results**

Lab Report Number	541995	541995		541995	
Field ID	MW12	DUP1	RPD	MW6	
Sampled Date/Time	5/04/2017	5/04/2017		5/04/2017	Ę
-					

Chem_Group	ChemName	Units	LOR					
TRH - NEPM 2013	C6-C10 minus BTEX (F1)	µg/L	20	1400	1700	19	1500	
	C6 - C10 Fraction	µg/L	20	2200	2500	13	2200	
	>C10-C16 minus Naphthalene (F2)	µg/L	100	210	150	33	140	
	>C10 - C16 Fraction	µg/L	100	210	210	0	140	
	>C16 - C34 Fraction (F3)	µg/L	100	<100	<100	0	<100	
	>C34 - C40 Fraction (F4)	µg/L	100	<100	<100	0	<100	
TRH - NEPM 1999	C6 - C 9 Fraction	µg/L	20	1800	2100	15	1800	-
	C10 - C14 Fraction	µg/L	50	750	480	44	510	-
	C15 - C28 Fraction	µg/L	100	<100	<100	0	<100	
	C29 - C36 Fraction	µg/L	100	<100	<100	0	<100	
	C10 - C36 (Sum of Total)	µg/L	100	750	480	44	510	
								<u> </u>
BTEX	Benzene	µg/L	1	190	160	17	140	
	Toluene	µg/L	1	27	50	60	50	
	Ethylbenzene	µg/L	1	250	290	15	270	
	Xylene (o)	µg/L	1	20	57	96	56	
	Xylene (m & p)	µg/L	2	280	230	20	220	
	Xylene Total	µg/L	3	300	290	3	270	
PAH	Naphthalene	µg/L	10	<10	60	143	<10	

*RPDs have only been considered where a concentration is greater than 1 times the LOR. **High RPDs are in bold (Acceptable RPDs for each LOR multiplier range are: 200 (1-10 x LOR); 50 (10-30 x LOR); 50 (> 30 x LOR))

Coffs Harbour City Council Coramba

541995 DUP2 5/04/2017	RPD
1700	13
2500	13
330	81
390	94
<100	0
<100	0
2000	11
900	55
<100	0
<100	0
900	55
200	35
28	56
260	4
21	91
290	27
310	14
60	143

Appendix C Table 5 Groundwater QA Results

			NEPN	1 2013				TRH -	NEPIN	1999					BTEX				PAH
C6-C10 minus BTEX (F1)	C6 - C10 Fraction	>C10-C16 minus Naphthalene (F2	>C10 - C16 Fraction	>C16 - C34 Fraction (F3)	>C34 - C40 Fraction (F4)	>C10 - C40 (Sum of Total)	C6 - C 9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 (Sum of Total)	Benzene	Toluene	Ethylbenzene	Xylene (o)	Xylene (m & p)	Xylene Total	BTEX (Sum of Total) - Lab Calc	Naphthalene
20	20	50	50	100	100	-	20	50	100	100	100	1	2	2	2	2	2	1	10

Field_ID Sampled_Date Units

LOR (TB and Rinsate)

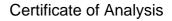
Rinsate1	5/04/2017	ug/L	<20	<20	<50	<50	<100	<100	-	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	-	<10
Rinsate2	6/04/2017	ug/L	<20	<20	<50	<50	<100	<100	-	<20	<50	<100	<100	<100	<1	<1	<1	<1	<2	<3	-	<10
TB01	3/04/2017	ug/L	<20	<20	-	-	-	-	-	<20	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
TB02	3/04/2017	ug/L	<20	<20	-	-	-	-	-	<20	-	-	-	-	<1	<1	<1	<1	<2	<3	-	<10
TS01	3/04/2017	%	83	-	-	-	-	-	-	70	-	-	-	-	110	96	96	101	92	95	-	82
TS02	3/04/2017	%	82	-	-	-	-	-	-	70	-	-	-	-	101	94	88	95	89	91	-	98

Coffs Harbour City Council Coramba

Appendix C Table 6 Monitored Natural Attenuation Parameters

												MNA indi	cators										
LOR		bH (lap derived) DH units	L Sn EC (lab derived)	5 0월 기기	Chloride	mg/L 0.1	mg/L 1-5	N-700 mg/L 0.01	<mark>г. ЕОО</mark> mg/L 0.01-0.02	N se se mg/L 0.005-0.01	Herrous Iron Mg/L 0.1-0.5	mg/L 0.1-0.5	mg/L 0.005	Magnesium mg/T 0.1-0.2	wg/L 0.1-0.5	Botassium Mg/L 0.1-0.5	mg/L 0.1	Methane mg/L	ug/L 5000	Mardness	ය සි 기	ے Carbonate as CaCO3 الم	ug/L 0-5
		•													0.2 0.0		•			-	-		
Field_ID MW2	Sampled_Date 3/07/2006 29/01/2008 17/03/2011 21/08/2013 4/12/2014	6	202 - - -	36 33 100 59	21 21 27 33	- 0 - -	14 10 2.6 7	0 0 - -	0 0 - -	0 0 0.2 0.024	29 1 26 29	3 4 4.7 4.2		2 2 4.4 4.2	25 22	3 3 2.1 1.6	- <0.1 - -	- - -	- - - <5000	- - -	- - - 59	- - - <5	- 83000 44000 150000 No access
	4/03/2015 11/06/2015 5/04/2017	-	-	<5 <20	37		2	-	- 0.17	0.018	<0.05	0.7	- 0.022	3.3 3.8		1.3	-	-	-	- 18	- <20	<5 <10	71000 Dry
MW6 MW9 MW11	3/07/2006 30/01/2008 17/03/2011 21/08/2013 3/12/2014 4/03/2015 10/06/2015 5/04/2017 5/04/2017 3/07/2006 29/01/2008 16/03/2011 22/08/2013 4/12/2014 3/03/2015		- - - - - - - - - - - - - - - - - - -	- 144 92 130 120 82 76 97 <20 - 	- 21 18 25 23 23 23 23 24 19 20 20 20 21 21	- <0.1 - - - - - - - - - - - - - - - - - - -	- 2 8.8 4 1 19 24 6.8 13 	- <0.01 - - - - - - - - - - - - - - - - - - -	 - <0.01 - - - <0.02 <0.02 <0.05 <0.01 - -<!--</td--><td>- <0.01 0.05 0.009 0.033 0.058 0.072 0.04 <0.01 - </td><td>- 10 8.6 10 4.4 9 6.2 12 <0.05 7 15 14 31 27</td><td>- 4 2 2.7 1.9 2.3 1.7 1.5 0.9 6 5 4 4 4.3 4</td><td></td><td>- 11 4.4 7.9 5 4.4 3.7 5 9.9 9.9 12 12 12 9.4 9.4 10 9.1</td><td>- 26 29 26 37 33 36 32 16 24 21 20 18 18</td><td>- 4 3.1 3.5 2.8 2.7 3 2.5 3.1 4 4 4.1 3.2 3.7</td><td>- <0.1 - - - - - - - - - - - - - - - - - - -</td><td></td><td>- - - - - - - - - - - - - - - - - - -</td><td>- - - - - - - - - 24 7.9</td><td></td><td>- - - - - - - - - - - - - - - - - - -</td><td>- 58000 240000 120000 90000 94000 - - - - 76000 11000 10cate 140000 86000</td>	- <0.01 0.05 0.009 0.033 0.058 0.072 0.04 <0.01 - 	- 10 8.6 10 4.4 9 6.2 12 <0.05 7 15 14 31 27	- 4 2 2.7 1.9 2.3 1.7 1.5 0.9 6 5 4 4 4.3 4		- 11 4.4 7.9 5 4.4 3.7 5 9.9 9.9 12 12 12 9.4 9.4 10 9.1	- 26 29 26 37 33 36 32 16 24 21 20 18 18	- 4 3.1 3.5 2.8 2.7 3 2.5 3.1 4 4 4.1 3.2 3.7	- <0.1 - - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - 24 7.9		- - - - - - - - - - - - - - - - - - -	- 58000 240000 120000 90000 94000 - - - - 76000 11000 10cate 140000 86000
	10/06/2015 5/04/2017 4/07/2006		378	130 110 130	19 34 27	-	<1 <5 2		- <0.02	2 0.38 0	29 29 4	3.7 3.5 4	- 25 -	11	16 28	3.6 3.1 6		- 1.3 -	- - 	- 49 -	- 110 -	<5 <10	_
MW14	30/01/2008 16/03/2011 21/08/2013 4/12/2014 2/03/2015 11/06/2015 5/04/2017	- - - - - -	- - - - - -	136 140 150 160 160 160 160	23 21 26 24 - 26 28		2 <1 <1 <1 <1 <1 <1 <5	<0.01 - - - - - -	<0.01 - - - - - - - - - - - - - -	<0.01 0.03 <0.005 <0.02 0.055 <0.005 <0.01	6 8.7 10 7.6 0.97 9.9 9	3 2.7 3.1 3.8 3.7 3.1 3	- - - - - - - 46	10 8.2 9 12 11 10 13	27 25 20 28 26 25	5 6 5.4 5.4 6.1 6.5 5.1	<0.1 - - - - - -	- - - - 1.5	- - <5000 - - - -	- - - - - 60	- 150 160 - - 160	- - <5 <5 <5 <5 <10	68000 310000 970000 90000 85000 92000 -
MW15	10/06/2015	-	-	27	21	-	16	-	-	0.051	2	7.4	-	1.1	29	3	-	-	-	-	-	<5	310000
MW24	4/07/2006	6	247	44	27		7	0	3	<0.01	<0.5	13		4	30	3							

Appendix D – Laboratory Documents


GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Brian Cork

Report
Project name
Project ID
Received Date

541995-W CORAMBA GME 2218605 Apr 11, 2017

Client Sample ID			MW10	MW4B	MW12	MW6
Sample Matrix			Water	Water	Water	Water
Eurofins mgt Sample No.			S17-Ap08863	S17-Ap08864	S17-Ap08865	S17-Ap08866
Date Sampled			Apr 05, 2017	Apr 05, 2017	Apr 05, 2017	Apr 05, 2017
Test/Reference	LOR	Unit				
		Onit				
Ammonia (as N)	0.01	mg/L	-	-	-	0.04
Chloride	1	mg/L	-	-	-	24
Ferrous Iron - Fe2+	0.05	mg/L	-	-	-	12
Nitrate (as N)	0.02	mg/L	-	-	-	< 0.02
Sulphate (as SO4)	5	mg/L	-	-	-	6.8
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	0.02	mg/L	< 0.02	0.56	1.8	1.8
TRH C10-C14	0.05	mg/L	< 0.05	0.07	0.75	0.51
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	0.75	0.51
втех						
Benzene	0.001	mg/L	< 0.001	0.012	0.19	0.14
Toluene	0.001	mg/L	< 0.001	0.058	0.027	0.050
Ethylbenzene	0.001	mg/L	< 0.001	0.043	0.25	0.27
m&p-Xylenes	0.002	mg/L	< 0.002	0.068	0.28	0.22
o-Xylene	0.001	mg/L	< 0.001	0.030	0.020	0.056
Xylenes - Total	0.003	mg/L	< 0.003	0.098	0.30	0.27
4-Bromofluorobenzene (surr.)	1	%	96	87	74	85
Dissolved Gases						
Methane	0.05	mg/L	-	-	-	0.52
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	0.21	0.14
TRH C6-C10	0.02	mg/L	< 0.02	0.65	2.2	2.2
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	0.44	1.4	1.5
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	0.21	0.14
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	-	-	-	97
Carbonate Alkalinity (as CaCO3)	10	mg/L	-	-	-	< 10
Total Alkalinity (as CaCO3)	20	mg/L	-	-	-	97
Heavy Metals						
Manganese	0.005	mg/L	-	-	-	17

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled	v s		MW10 Water S17-Ap08863 Apr 05, 2017	MW4B Water S17-Ap08864 Apr 05, 2017	MW12 Water S17-Ap08865 Apr 05, 2017	MW6 Water S17-Ap08866 Apr 05, 2017
Test/Reference	LOR	Unit		• • • • • •	• • • • •	
Alkali Metals						
Calcium	0.5	mg/L	-	-	-	1.5
Magnesium	0.5	mg/L	-	-	-	5.0
Potassium	0.5	mg/L	-	-	-	2.5
Sodium	0.5	mg/L	-	-	-	32
Hardness Set						
Hardness mg equivalent CaCO3/L	5	mg/L	-	-	-	24

Client Sample ID			MW2	MW15	MW18	MW20	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S17-Ap08867	S17-Ap08868	S17-Ap08869	S17-Ap08870	
Date Sampled			Apr 06, 2017	Apr 06, 2017	Apr 05, 2017	Apr 06, 2017	
Test/Reference	LOR	Unit		• • • • •			
		Cint					
Ammonia (as N)	0.01	mg/L	< 0.01	-	-	-	
Chloride	1	mg/L	34	-	-	-	
Ferrous Iron - Fe2+	0.05	mg/L	< 0.05	-	-	-	
Nitrate (as N)	0.02	mg/L	0.17	-	-	-	
Sulphate (as SO4)	5	mg/L	< 5	-	-	-	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	0.32	< 0.02	
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	0.07	< 0.05	
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
BTEX							
Benzene	0.001	mg/L	< 0.001	< 0.001	0.015	< 0.001	
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	0.003	< 0.001	
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	0.003	< 0.002	
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003	0.003	< 0.003	
4-Bromofluorobenzene (surr.)	1	%	75	77	107	74	
Dissolved Gases							
Methane	0.05	mg/L	< 0.05	-	-	-	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	0.05	< 0.05	
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	0.36	< 0.02	
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02	0.34	< 0.02	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	0.05	< 0.05	
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
Alkalinity (speciated)							
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	< 20	-	-		
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	-	-	-	
Total Alkalinity (as CaCO3)	20	mg/L	< 20	-	-		

Client Sample ID Sample Matrix			MW2 Water	MW15 Water	MW18 Water	MW20 Water S17-Ap08870 Apr 06, 2017	
Eurofins mgt Sample No.			S17-Ap08867	S17-Ap08868	S17-Ap08869		
Date Sampled			Apr 06, 2017	Apr 06, 2017	Apr 05, 2017		
Test/Reference	LOR	Unit					
Heavy Metals							
Manganese	0.005	mg/L	0.022	-	-	-	
Alkali Metals							
Calcium	0.5	mg/L	1.1	-	-	-	
Magnesium	0.5	mg/L	3.8	-	-	-	
Potassium	0.5	mg/L	1.8	-	-	-	
Sodium	0.5	mg/L	15	-	-	-	
Hardness Set							
Hardness mg equivalent CaCO3/L	5	mg/L	18	-	-	-	

Client Sample ID			MW14	MW9	MW11	2017.3_DUP1	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S17-Ap08871	S17-Ap08872	S17-Ap08873	S17-Ap08874	
Date Sampled			Apr 06, 2017	Apr 06, 2017	Apr 06, 2017	Apr 05, 2017	
Test/Reference	LOR	Unit					
Ammonia (as N)	0.01	mg/L	< 0.01	< 0.01	0.38	-	
Chloride	1	mg/L	28	19	34	-	
Ferrous Iron - Fe2+	0.05	mg/L	9.0	< 0.05	29	-	
Nitrate (as N)	0.02	mg/L	< 0.02	< 0.02	< 0.02	-	
Sulphate (as SO4)	5	mg/L	< 5	13	< 5	-	
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions						
TRH C6-C9	0.02	mg/L	44	< 0.02	0.97	2.1	
TRH C10-C14	0.05	mg/L	5.5	< 0.05	0.49	0.48	
TRH C15-C28	0.1	mg/L	0.1	< 0.1	< 0.1	< 0.1	
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH C10-36 (Total)	0.1	mg/L	5.6	< 0.1	0.49	0.48	
втех							
Comments					R16		
Benzene	0.001	mg/L	6.6	< 0.001	0.11	0.16	
Toluene	0.001	mg/L	7.2	< 0.001	0.024	0.050	
Ethylbenzene	0.001	mg/L	2.3	< 0.001	< 0.01	0.29	
m&p-Xylenes	0.002	mg/L	8.6	< 0.002	0.13	0.23	
o-Xylene	0.001	mg/L	3.0	< 0.001	< 0.01	0.057	
Xylenes - Total	0.003	mg/L	12	< 0.003	0.13	0.29	
4-Bromofluorobenzene (surr.)	1	%	82	71	91	82	
Dissolved Gases		_					
Methane	0.05	mg/L	1.5	< 0.05	1.3	-	
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions						
Naphthalene ^{N02}	0.01	mg/L	0.35	< 0.01	< 0.01	0.06	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	1.6	< 0.05	0.32	0.15	
TRH C6-C10	0.02	mg/L	52	< 0.02	1.2	2.5	
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	24	< 0.02	0.94	1.7	
Total Recoverable Hydrocarbons - 2013 NEPM F	Fractions						
TRH >C10-C16	0.05	mg/L	1.9	< 0.05	0.32	0.21	
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1	

Client Sample ID			MW14	MW9	MW11	2017.3_DUP1 Water S17-Ap08874 Apr 05, 2017	
Sample Matrix			Water	Water	Water		
Eurofins mgt Sample No.			S17-Ap08871	S17-Ap08872	S17-Ap08873		
Date Sampled			Apr 06, 2017	Apr 06, 2017	Apr 06, 2017		
Test/Reference	LOR	Unit					
Alkalinity (speciated)							
Bicarbonate Alkalinity (as CaCO3)	20	mg/L	160	< 20	110	-	
Carbonate Alkalinity (as CaCO3)	10	mg/L	< 10	< 10	< 10	-	
Total Alkalinity (as CaCO3)	20	mg/L	160	< 20	110	-	
Heavy Metals							
Manganese	0.005	mg/L	46	0.054	25	-	
Alkali Metals							
Calcium	0.5	mg/L	3.0	0.9	3.5	-	
Magnesium	0.5	mg/L	13	1.4	9.9	-	
Potassium	0.5	mg/L	5.1	2.2	3.1	-	
Sodium	0.5	mg/L	21	19	16	-	
Hardness Set							
Hardness mg equivalent CaCO3/L	5	mg/L	60	7.9	49	-	

Client Sample ID			2017.3_DUP2	RINSATE1	RINSATE2	TS01	
Sample Matrix			Water	Water	Water	Water	
Eurofins mgt Sample No.			S17-Ap08875	S17-Ap08876	S17-Ap08877	S17-Ap08878	
Date Sampled			Apr 05, 2017	Apr 05, 2017	Apr 06, 2017	Apr 03, 2017	
Test/Reference	LOR	Unit					
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	-	-	-	-	
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	<u> </u>					
TRH C6-C9	0.02	mg/L	2.0	< 0.02	< 0.02	70%	
TRH C10-C14	0.05	mg/L	0.90	< 0.05	< 0.05	-	
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1	< 0.1	-	
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1		
TRH C10-36 (Total)	0.1	mg/L	0.9	< 0.1	< 0.1	-	
BTEX							
Benzene	0.001	mg/L	0.20	< 0.001	< 0.001	110%	
Toluene	0.001	mg/L	0.028	< 0.001	< 0.001	96%	
Ethylbenzene	0.001	mg/L	0.26	< 0.001	< 0.001	96%	
m&p-Xylenes	0.002	mg/L	0.29	< 0.002	< 0.002	92%	
o-Xylene	0.001	mg/L	0.021	< 0.001	< 0.001	101%	
Xylenes - Total	0.003	mg/L	0.31	< 0.003	< 0.003	95%	
4-Bromofluorobenzene (surr.)	1	%	76	77	67	77	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
TRH C6-C10	0.02	mg/L	-	-	-	83%	
Volatile Organics							
Naphthalene ^{N02}	0.01	mg/L	-	-	-	82%	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
Naphthalene ^{N02}	0.01	mg/L	0.06	< 0.01	< 0.01	-	
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	0.33	< 0.05	< 0.05	-	
TRH C6-C10	0.02	mg/L	2.5	< 0.02	< 0.02	-	
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	1.7	< 0.02	< 0.02	-	
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions						
TRH >C10-C16	0.05	mg/L	0.39	< 0.05	< 0.05	-	
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1	< 0.1	-	
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	-	

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference	LOR	Unit	TB01 Water S17-Ap08879 Apr 03, 2017	TS02 Water S17-Ap08880 Apr 03, 2017	TB02 Water S17-Ap08881 Apr 03, 2017
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	-	< 0.02
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions				
TRH C6-C9	0.02	mg/L	< 0.02	70%	< 0.02
втех					
Benzene	0.001	mg/L	< 0.001	101%	< 0.001
Toluene	0.001	mg/L	< 0.001	94%	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	88%	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	89%	< 0.002
o-Xylene	0.001	mg/L	< 0.001	95%	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	91%	< 0.003
4-Bromofluorobenzene (surr.)	1	%	73	83	70
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions				
TRH C6-C10	0.02	mg/L	< 0.02	82%	< 0.02
Volatile Organics					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	98%	< 0.01

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description TRH C6-C10 less BTEX (F1)	Testing Site Sydney	Extracted Apr 11, 2017	Holding Time 14 Day
- Method: LM-LTM-ORG-2010	eyaney	, p, _ 0	
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 18, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010	-))		,
BTEX	Sydney	Apr 11, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010		•	2
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 11, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			-
Volatile Organics	Sydney	Apr 11, 2017	7 Days
- Method: LTM-ORG-2150 VOCs in Soils Liquid and other Aqueous Matrices			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 11, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Eurofins mgt Suite B11			
Ammonia (as N)	Melbourne	Apr 28, 2017	28 Day
- Method: APHA 4500-NH3 Ammonia Nitrogen by FIA			
Chloride	Melbourne	Apr 28, 2017	28 Day
- Method: LTM-INO-4090 Chloride by Discrete Analyser			
Nitrate (as N)	Melbourne	Apr 12, 2017	7 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Sulphate (as SO4)	Melbourne	Apr 12, 2017	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
Alkalinity (speciated)	Melbourne	Apr 28, 2017	14 Day
- Method: APHA 2320 Alkalinity by Titration			
Alkali Metals	Melbourne	Apr 28, 2017	180 Day
- Method: USEPA 6010 Alkali Metals			
Ferrous Iron - Fe2+	Melbourne	Apr 12, 2017	7 Days
- Method: LTM-INO-4190 Ferrous Iron in Water by Discrete Analyser			
Dissolved Gases	Melbourne	Apr 12, 2017	7 Day
- Method: LTM-ORG-2070 by Headspace GC-FID			
Heavy Metals	Melbourne	Apr 12, 2017	180 Day
- Method: LTM-MET-3040 Metals in Waters by ICP-MS			
Hardness Set			
Calcium	Melbourne	Apr 12, 2017	180 Day
- Method: LTM-MET-3010 Alkali Metals, S, Si and P by ICP-AES			
Magnesium	Melbourne	Apr 12, 2017	180 Day
- Method: LTM-MET-3010 Alkali Metals, S, Si and P by ICP-AES			
Hardness mg equivalent CaCO3/L	Melbourne	Apr 12, 2017	28 Day
- Method: APHA 2340B Hardness by Calculation			
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 18, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			

	🔅 eur	ofins	mgt		ABN- 50 005 (e.mail : Enviro web : www.eur	Sales@		s.com	2. 0 P N	akleigh hone : + ATA # '	ston Tov VIC 310 +61 3 85	66 64 500		Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 18217 Site # 18217	
Ac Pr	Company Name: GHD Pty Ltd NSW Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: CORAMBA GME Project ID: 2218605						Re	der Ne port # one: x:		0	41995 2 9239 2 9239	9 710		Received:Apr 11, 2017 9:45 AMDue:May 5, 2017Priority:15 DayContact Name:Brian Cork	
	Sample Detail				Ferrous Iron - Fe2+	Manganese	Methane	Total Alkalinity (as CaCO3)	Hardness Set	Eurofins mgt Suite B11	Eurofins mgt Suite B1	BTEX and Volatile TRH			
Melt	oourne Laborato	ory - NATA Site	# 1254 & 142	271		х	х	х	х	х	х				
	ney Laboratory											Х	Х		
Bris	bane Laborator	y - NATA Site #	20794												
Pert	h Laboratory - N	NATA Site # 182	217												
Exte	rnal Laboratory														
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
1	MW10	Apr 05, 2017		Water	S17-Ap08863							Х		1	
2	MW4B	Apr 05, 2017		Water	S17-Ap08864					1		Х			
3	MW12	Apr 05, 2017		Water	S17-Ap08865							Х			
4	MW6	Apr 05, 2017		Water	S17-Ap08866	х	х	Х	Х	х	х	Х			
5	MW2	Apr 06, 2017		Water	S17-Ap08867	х	х	Х	х	х	х	Х			
6	MW15	Apr 06, 2017		Water	S17-Ap08868							Х			
7	MW18	Apr 05, 2017		Water	S17-Ap08869							Х			
8	MW20	Apr 06, 2017		Water	S17-Ap08870							Х			
9	MW14	Apr 06, 2017		Water	S17-Ap08871	х	х	х	х	х	х	х			
<u> </u>	1				1011 100011	L ^ _				L.^					

🔅 eur	ofins mgt		ABN– 50 005 (e.mail : Envirot web : www.eur	Sales@	eurofins	s.com	2- 0 Pl N	felbourn -5 Kings Dakleigh Phone : + IATA # 1 Site # 125	ston Tov VIC 31 +61 3 85 1261	66 564 500		Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 18217
Company Name: Address:	Address: Level 15, 133 Castlereagh Street Sydney NSW 2000 Project Name: CORAMBA GME				Re	der Ne port # none: ix:		02	41995 2 923 2 923	9 710		Received:Apr 11, 2017 9:45 AMDue:May 5, 2017Priority:15 DayContact Name:Brian Cork
Project Name: Project ID:	CORAMBA GME 2218605											Eurofins mgt Analytical Services Manager : Nibha Vaidya
Sample Detail					Manganese	Methane	Total Alkalinity (as CaCO3)	Hardness Set	Eurofins mgt Suite B11	Eurofins mgt Suite B1	BTEX and Volatile TRH	
Melbourne Laborato	ry - NATA Site # 1254 & 14	271		Х	Х	Х	Х	Х	Х			
Sydney Laboratory -	NATA Site # 18217									Х	Х	
Brisbane Laboratory	- NATA Site # 20794											
Perth Laboratory - N				<u> </u>	 	ļ!	 	<u> </u>				
	Apr 06, 2017	Water	S17-Ap08872	Х	Х	Х	Х	Х	Х	Х		
	Apr 06, 2017	Water	S17-Ap08873	Х	X	Х	Х	Х	X	Х		
12 2017.3_DUP1	Apr 05, 2017	Water	S17-Ap08874	<u> </u>	<u> </u>	—	├──	—		X		
		Wotor	S17-Ap08875	1		↓ !	├──	├──		X		
13 2017.3_DUP2		Water	1						1	Х	1	
14 RINSATE1	Apr 05, 2017	Water	S17-Ap08876			┼───┧	<u> </u>					
14 RINSATE1 15 RINSATE2	Apr 05, 2017 Apr 06, 2017	Water Water	S17-Ap08876 S17-Ap08877							X		
14 RINSATE1 15 RINSATE2 16 TS01	Apr 05, 2017 Apr 06, 2017 Apr 03, 2017	Water Water Water	S17-Ap08876 S17-Ap08877 S17-Ap08878								X	
14 RINSATE1 15 RINSATE2 16 TS01 17 TB01	Apr 05, 2017 Apr 06, 2017 Apr 03, 2017 Apr 03, 2017 Apr 03, 2017	Water Water Water Water	S17-Ap08876 S17-Ap08877 S17-Ap08878 S17-Ap08879								Х	
14 RINSATE1 15 RINSATE2 16 TS01 17 TB01 18 TS02	Apr 05, 2017 Apr 06, 2017 Apr 03, 2017	Water Water Water	S17-Ap08876 S17-Ap08877 S17-Ap08878									

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

mg/L: milligrams per litre

NTU: Nephelometric Turbidity Units

ppm: Parts per million

%: Percentage

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ppb: Parts per billion org/100mL: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acc	ceptance Limits	Pass Limits	Qualifying Code
Method Blank						
Ammonia (as N)	mg/L	< 0.01		0.01	Pass	
Chloride	mg/L	< 1		1	Pass	
Ferrous Iron - Fe2+	mg/L	< 0.05		0.05	Pass	
Nitrate (as N)	mg/L	< 0.02		0.02	Pass	
Sulphate (as SO4)	mg/L	< 5		5	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 1999 NEPM Fractions						
TRH C6-C9	mg/L	< 0.02		0.02	Pass	
TRH C10-C14	mg/L	< 0.05		0.05	Pass	
TRH C15-C28	mg/L	< 0.1		0.1	Pass	
TRH C29-C36	mg/L	< 0.1		0.1	Pass	
Method Blank						
BTEX						
Benzene	mg/L	< 0.001		0.001	Pass	
Toluene	mg/L	< 0.001		0.001	Pass	
Ethylbenzene	mg/L	< 0.001		0.001	Pass	
m&p-Xylenes	mg/L	< 0.002		0.002	Pass	
o-Xylene	mg/L	< 0.001		0.001	Pass	
Xylenes - Total	mg/L	< 0.003		0.003	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
Method Blank						
Dissolved Gases						
Methane	mg/L	< 0.05		0.05	Pass	
Method Blank						
Volatile Organics						
Naphthalene	mg/L	< 0.01		0.01	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
Naphthalene	mg/L	< 0.01		0.01	Pass	
TRH C6-C10	mg/L	< 0.02		0.02	Pass	
Method Blank						
Total Recoverable Hydrocarbons - 2013 NEPM Fractions						
TRH >C10-C16	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34	mg/L	< 0.1		0.1	Pass	
TRH >C34-C40	mg/L	< 0.1		0.1	Pass	
Method Blank						
Alkalinity (speciated)						
Bicarbonate Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Carbonate Alkalinity (as CaCO3)	mg/L	< 10		10	Pass	
Total Alkalinity (as CaCO3)	mg/L	< 20		20	Pass	
Method Blank						
Heavy Metals						
Manganese	mg/L	< 0.005		0.005	Pass	
Method Blank			•			
Alkali Metals						
Calcium	mg/L	< 0.5		0.5	Pass	
Magnesium	mg/L	< 0.5		0.5	Pass	
Potassium	mg/L	< 0.5		0.5	Pass	
Sodium	mg/L	< 0.5		0.5	Pass	
LCS - % Recovery	ing/E			0.0	1 400	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Ammonia (as N)			%	91		70-130	Pass	
Chloride			%	105		70-130	Pass	
Ferrous Iron - Fe2+			%	96		70-130	Pass	
Nitrate (as N)			%	92		70-130	Pass	
Sulphate (as SO4)			%	117		70-130	Pass	
LCS - % Recovery								
Total Recoverable Hydrocarbons -	1999 NEPM Fracti	ions						
TRH C6-C9			%	128		70-130	Pass	
TRH C10-C14			%	70		70-130	Pass	
LCS - % Recovery							•	
BTEX								
Benzene			%	114		70-130	Pass	
Toluene			%	109		70-130	Pass	
Ethylbenzene			%	106		70-130	Pass	
m&p-Xylenes			%	106		70-130	Pass	
o-Xylene			%	117		70-130	Pass	
Xylenes - Total			%	117		70-130	Pass	
LCS - % Recovery			/0			10-130	F d 55	
· · · · · · · · · · · · · · · · · · ·		ione				1		
Total Recoverable Hydrocarbons -	2013 NEPW Fract	ions	0/	400		70.400	Dese	
TRH C6-C10			%	130		70-130	Pass	
LCS - % Recovery								
Dissolved Gases							_	
Methane			%	114		70-130	Pass	
LCS - % Recovery				1	1		1	
Volatile Organics								
Naphthalene			%	109		70-130	Pass	
LCS - % Recovery					1	1	1	
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ions						
Naphthalene			%	107		70-130	Pass	
TRH C6-C10			%	112		70-130	Pass	
LCS - % Recovery				-				
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ions						
TRH >C10-C16			%	72		70-130	Pass	
LCS - % Recovery								
Alkalinity (speciated)								
Carbonate Alkalinity (as CaCO3)			%	87		70-130	Pass	
Total Alkalinity (as CaCO3)			%	89		70-130	Pass	
LCS - % Recovery					· · · · ·			
Heavy Metals								
Manganese			%	108		80-120	Pass	
LCS - % Recovery			,,,		<u> </u>	00120	1 400	
Alkali Metals								
Calcium			%	98		70-130	Pass	
			%	109		70-130	Pass	
Magnesium Potossium						70-130		
Potassium			%	94			Pass	
Sodium			%	97		70-130	Pass	Qualificities
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons -				Result 1				
TRH C10-C14	S17-Ap11109	NCP	%	77		70-130	Pass	
Spike - % Recovery				T	1			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	S17-Ap11109	NCP	%	87		70-130	Pass	
Spike - % Recovery								

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
				Result 1			
Chloride	P17-Ap07628	NCP	%	78	70-130	Pass	
Spike - % Recovery							
Dissolved Gases				Result 1			
Methane	M17-Ap08618	NCP	%	120	70-130	Pass	
Spike - % Recovery							
Alkalinity (speciated)				Result 1			
Total Alkalinity (as CaCO3)	P17-Ap09255	NCP	%	94	70-130	Pass	
Spike - % Recovery							
Alkali Metals	_			Result 1			
Calcium	M17-Ap10944	NCP	%	93	70-130	Pass	
Magnesium	M17-Ap10944	NCP	%	103	70-130	Pass	
Potassium	M17-Ap10035	NCP	%	90	70-130	Pass	
Sodium	M17-Ap10944	NCP	%	109	70-130	Pass	
Spike - % Recovery							
	-			Result 1			
Ammonia (as N)	S17-Ap08867	CP	%	91	70-130	Pass	
Nitrate (as N)	S17-Ap08867	CP	%	91	70-130	Pass	
Sulphate (as SO4)	S17-Ap08867	CP	%	95	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Manganese	M17-Ap10676	NCP	%	79	75-125	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S17-Ap08868	CP	%	105	70-130	Pass	
Spike - % Recovery							
втех				Result 1			
Benzene	S17-Ap08868	CP	%	100	70-130	Pass	
Toluene	S17-Ap08868	CP	%	94	70-130	Pass	
Ethylbenzene	S17-Ap08868	CP	%	91	70-130	Pass	
m&p-Xylenes	S17-Ap08868	CP	%	90	70-130	Pass	
o-Xylene	S17-Ap08868	CP	%	101	70-130	Pass	
Xylenes - Total	S17-Ap08868	CP	%	94	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1			
TRH C6-C10	S17-Ap08868	CP	%	103	70-130	Pass	
Spike - % Recovery						-	
Volatile Organics				Result 1			
Naphthalene	S17-Ap08868	CP	%	93	70-130	Pass	
Spike - % Recovery				1		1	
	- 1			Result 1			
Ferrous Iron - Fe2+	S17-Ap08872	CP	%	81	70-130	Pass	
Spike - % Recovery							
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	S17-Ap08877	CP	%	112	70-130	Pass	
Spike - % Recovery							
BTEX	- 1			Result 1			
Benzene	S17-Ap08877	CP	%	107	70-130	Pass	
Toluene	S17-Ap08877	СР	%	97	70-130	Pass	
Ethylbenzene	S17-Ap08877	CP	%	94	70-130	Pass	
m&p-Xylenes	S17-Ap08877	CP	%	89	70-130	Pass	
o-Xylene	S17-Ap08877	CP	%	100	70-130	Pass	
Xylenes - Total	S17-Ap08877	CP	%	93	70-130	Pass	
Spike - % Recovery							

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	2013 NEPM Fract	ions		Result 1					
TRH C6-C10	S17-Ap08877	109			70-130	Pass			
Spike - % Recovery				1					
Volatile Organics				Result 1					
Naphthalene	S17-Ap08877	CP	%	114			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate				-	i i		1	r	
Total Recoverable Hydrocarbons	1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	S17-Ap11108	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S17-Ap11108	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S17-Ap11108	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				-					
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	S17-Ap11108	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S17-Ap11108	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S17-Ap11108	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Chloride	S17-Ap08866	CP	mg/L	24	25	1.5	30%	Pass	
Ferrous Iron - Fe2+	B17-Ap10552	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Sulphate (as SO4)	S17-Ap08866	CP	mg/L	6.8	6.8	1.1	30%	Pass	
Duplicate									
Alkalinity (speciated)				Result 1	Result 2	RPD			
Bicarbonate Alkalinity (as CaCO3)	P17-Ap09254	NCP	mg/L	120	110	9.0	30%	Pass	
Carbonate Alkalinity (as CaCO3)	P17-Ap09254	NCP	mg/L	< 10	< 10	<1	30%	Pass	
Total Alkalinity (as CaCO3)	P17-Ap09254	NCP	mg/L	120	110	9.0	30%	Pass	
Duplicate	•		<u>U</u>						
Alkali Metals				Result 1	Result 2	RPD			
Calcium	M17-Ap09237	NCP	mg/L	78	79	2.0	30%	Pass	
Magnesium	M17-Ap09237	NCP	mg/L	46	46	<1	30%	Pass	
Potassium	M17-Ap09237	NCP	mg/L	6.7	6.8	2.0	30%	Pass	
Sodium	M17-Ap09237	NCP	mg/L	45	46	3.0	30%	Pass	
Duplicate			<u>g</u> , <u>_</u>	10	10	0.0		1 400	
Hardness Set				Result 1	Result 2	RPD			
Hardness mg equivalent CaCO3/L	M17-Ap09237	NCP	mg/L	380	390	1.3	30%	Pass	
Duplicate			<u>g</u> , <u>_</u>			110		1 0.00	
Heavy Metals				Result 1	Result 2	RPD			
Manganese	M17-Ap10676	NCP	mg/L	0.23	0.22	6.0	30%	Pass	
Duplicate						0.0			
Dissolved Gases				Result 1	Result 2	RPD			
Methane	S17-Ap08871	СР	mg/L	1.5	1.5	<1	30%	Pass	
Duplicate			y/ L	1.0			0070	1 400	
- spirotto				Result 1	Result 2	RPD			
Chloride	S17-Ap08872	СР	mg/L	19	17	7.7	30%	Pass	
Sulphate (as SO4)	S17-Ap08872	CP	mg/L	13	17	3.3	30%	Pass	
Duplicate			mg/∟	10		0.0		1 4 3 3	
Total Recoverable Hydrocarbons -		ione		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ap08876	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate			mg/L	< 0.02	< 0.02	51	30%	F 855	
				Bogult 1	Rocult 2	חתם			
BTEX	C17 A-00070		mc/l	Result 1	Result 2	RPD	200/	Dean	
Benzene	S17-Ap08876	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-Ap08876	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-Ap08876	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-Ap08876	CP	mg/L	< 0.002	< 0.002	<1	30%	Pass	

Duplicate										
втех		Result 1	Result 2	RPD						
o-Xylene	S17-Ap08876	mg/L	< 0.001	< 0.001	<1	30%	Pass			
Xylenes - Total	mg/L	< 0.003	< 0.003	<1	30%	Pass				
Duplicate										
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1	Result 2	RPD				
TRH C6-C10	S17-Ap08876	CP	mg/L	< 0.02	< 0.02	<1	30%	Pass		
Duplicate										
Volatile Organics				Result 1	Result 2	RPD				
Naphthalene S17-Ap08876 CP		CP	mg/L	< 0.01	< 0.01	<1	30%	Pass		

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

0000	
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04 R16

The LORs have been raised due to the high concentration of one or more analytes

Authorised By

Nibha Vaidya	Analytical Services Manager
Alex Petridis	Senior Analyst-Metal (VIC)
Harry Bacalis	Senior Analyst-Volatile (VIC)
Huong Le	Senior Analyst-Inorganic (VIC)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

li falle

Glenn Jackson National Operations Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHD Dry Ltd NG/M

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Stat

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com web : www.eurofins.com.au

Sample Receipt Advice

Company name.	GHD Ply Lid NSW
Contact name:	Brian Cork
Project name:	CORAMBA GME
Project ID:	2218605
COC number:	Not provided
Turn around time:	15 Day
Date/Time received:	Apr 11, 2017 9:45 AM
Eurofins mgt reference:	541995

Sample information

Company name:

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 12 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Brian Cork - brian.cork@ghd.com.

Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis

38 Years of Environmental Analysis & Experience

eurofins mgt	Phone: +612.9	ling F, 16 Mars Road Lane Cove	Ur Pt] Brisbane nit 1-21 Smallwood Place, Mu none: +617 3902 4600 nail: enviro bris@mgllabmarl		2 Kin Phon	Melbourne gston Town Close, Oakleigh, V e: +613 8564 5000 Fax I: enquiries.melb@mgltabmark	c +613 8564 5090
		CI	HAIN OF CUST	ODY RECOR	D			
LIENT DETAILS							Page	of 2
ompany Name GHD Pty Ltd	Contact Name	Sam nurbill		Purchase Order :			COC Number :	
The second second second second second second second second second second second second second second second s	Project Manager			PROJECT Number : 22	18605	1127	Eurofins mgt quote ID :	
Hice Address. 230 Harbour Prive	Email for results	Brian Cork				0	Data output format:	· · · · · · · · · · · · · · · · · · ·
Cott's Haubour		brian. cork pick	d'upmin	Lova	inba Grm	and the second se	g times (with correct presen	ution
NSW 2450		<u></u>	Analytes				g times (with correct presen nformation contact the lab	valion).
ancial Directions & Comments					Wa	ters		Seils
					BTEX, MAH, VOC	14 days	BTEX, MAH, VOC	14 da
					TRH, PAH, Phenols, F	esticides 7 days	TRH, PAH, Phenois, Pes	
					Heavy Metals	6 months		6 mo
		8	N		Mercury, CrVI	28 days		28 da
		50 50	2		Microbiological testing BOD, Nitrate, Nitrite, T	24 hours	The option growth to string	72 ho
	1 3	Anton Anions I Anions Anions Alkating	3 2		Solids - TSS, TDS etc.	otal N 2 days 7 days	Anions SPOCAS, pH Field and F	28 da OX, CrS 24 ho
	- 283	Petrons Produs Apions Hardnes Alkaum	2 2		Ferrous iron	7 days	ASLP, TCLP	7 day
rofins mgt DI water batch number:		Philo Philo					1 //00/11/00/	,,
Sample ID Date Matrix	Ferzu	12222333	MA		Containers:			Sample comments:
	N. N.				1LP 250P 12	1LA 40mL va	1 125mLA Jar 250	A
1 MW10 5/417 W		┼╌╆╾┟╴┠╶┞╍╊╾┝				2	<u> </u>	_
		┼╌╂┈╄━┽━╁╾╀╶┼			╉┡┝	2		
3 MW12 5/4/17						2		
5 00.02 6/4/19					1 1	2		
6 MW15 6/4/17	XX					2		
7 MW18 51417	XX					2		
8 MW20 6417	XX					2		
· MW14 6/4/17			XX		1 3		I I	
10 MW9 6/4/17						2 2		
11. MWII 6/4/17 12 2017.3 DUPI 5/4/17	XXXX		× × - - - -	<u> </u>		2 2		
12 2017.3 DW1 51414		┼╾┠╼╞╌┼┈┫╾┼╼┽				2		1
14 RMS02 1 5149	XX		+++++++			2		
15 Rinsate 2 6/4117						2		· · · · · · · · · · · · · · · · · · ·
16 TSOI 31417 V	or X					2		
Newvieland D/		atory Staff	Turn arou	nd time		Method Of Shipmer	nt	Temperature on arrival:
	ived By:	5			Courier			
	A Time :		DAY 🗋 2 DAY 🛄 3	DAY	Hand Delivered			Report number:
1014117 12:00pm	11/4	9:45m.	1		Postal			
	itura	s s	DAY 🔽 10 DAY 🔲 🗘	Hher:	Courier Consignment #	1		541995
MARTING		. 0			a second s			$p \rightarrow r r r \checkmark$
	1.00							1

Ŷ

B 10.				1	1.61		
dat The	Ω		20	ጉተ	а.	2	0
	C	E.L	14	21	н	г.	
	-	~.					-

100211

Sydney Unit F3 - 6 Building F, 16 Mars Road Lane Cove Phone: +612 9900 8400 Email: enviro.syd@mgttabmark.com.au

Brisbane Unit 1-21 Smallwood Place, Murrarie Phone: +617 3902 4600 Email: enviro bris@mgllabmark.com.au Melbourne 2 Kingston Town Close, Oakleigh, VIC 3166 Phone: +613 8564 5000 Fax: +613 8564 5090 Email: enquiries.melb@mgtlabmark.com.au

CHAIN OF CUSTODY RECORD Page 2 of 2 CLIENT DETAILS COC Number : Contact Name Purchase Order : Company Name GHD AL LID Sam Turbill Eurofins | mgt quote ID : PROJECT Number : Office Address 2.30 Harbow Drive **Project Manager** 2218605 Brian Cork Data output format: Email for results **PROJECT Name :** Coffs Harbow Covamba GME brian.cork@ond.com Some common holding times (with correct preservation). NSW 2450 Analytes For further information contact the lab Special Directions & Comments Seils Waters BTEX, MAH, VOC 14 days BTEX, MAH, VOC 14 days TRH, PAH, Phenols, Pesticides 7 days TRH, PAH, Phenols, Pesticides 14 days Heavy Metals 6 months Heavy Metals 3 months Mercury, CrVI 28 days Mercury, CrVI 28 days Microbiological testing 24 hours Microbiological lesting 72 hours BOD, Nitrate, Nitrile, Tolal N 28 days 2 days Anions Solids - TSS, TDS etc. SPOCAS, pH Field and FOX, CrS 24 hours 7 days NAS 7 days Ferrous iron ASLP, TCLP 7 days Eurofins | mgt DI water batch number: Containers: 0 Matrix Sample comments: Sample ID Date 1LP 250P 125P 1LA 40mL val 125mL A Jar TBOI 3417 W × 2 × 31417 2 TSO2 W 2 $\overline{\mathbf{X}}$ 2 3/4/17 w TG02 3 4 5 6 7 8 9 10 11 12 13 14 15 16 emperature on arrival: Turn around time Method Of Shipment Laboratory Staff Relinguished By Received By: Stephanie Martin Courier 1 DAY 🛄 2 DAY 🛄 3 DAY 🗍 Date & Time : Hand Delivered Report number: 10/4117 Postal 12:00pm 5 DAY 📝 10 DAY 🔲 Other: Signatura Signature; Courier Consignment

Q53009_R0 Issue Date 25 February 2013 Page 1 of 1

GHD Pty Ltd NSW Level 15, 133 Castlereagh Street Sydney NSW 2000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Brian Cork

Report
Project name
Project ID
Received Date

540853-W CHCC GROUNDWATER MANAGEMENT PLAN 2218605 Apr 04, 2017

Client Sample ID			RIVER 1	RIVER 2
Sample Matrix			Water	Water
Eurofins mgt Sample No.			S17-Ap01678	S17-Ap01679
Date Sampled			Mar 29, 2017	Mar 29, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM Frac	tions			
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-36 (Total)	0.1	mg/L	< 0.1	< 0.1
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	91	86
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B1			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Apr 07, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Sydney	Apr 04, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 04, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Apr 07, 2017	7 Day
- Method: TRH C6-C40 - LTM-ORG-2010			

	🔅 eur	ofins	mgt		ABN– 50 005 (e.mail : Enviro web : www.eur	Sales@e	eurofins.com n.au	Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 2079	Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 4 NATA # 1261 Site # 18217
	mpany Name: dress:	GHD Pty Ltd Level 15, 133 Sydney NSW 2000	NSW 3 Castlereagh	Street			Order No.: Report #: Phone: Fax:	540853 02 9239 7100 02 9239 7199		Due: Priority:	Apr 4, 2017 9:30 AM Apr 11, 2017 5 Day Brian Cork
	oject Name: oject ID:	CHCC GROU 2218605	JNDWATER	MANAGEMENT	PLAN				Eurofir	ns I mot Analytical Ser	vices Manager : Nibha Vaidya
			mple Detail			Eurofins mgt Suite B1					
	ourne Laborato			271		x					
	ney Laboratory										
	h Laboratory - N										
	rnal Laboratory			-							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID						
1	RIVER 1	Mar 29, 2017		Water	S17-Ap01678	х					
2	RIVER 2	Mar 29, 2017		Water	S17-Ap01679	х					
Test	Counts					2					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

 org/100ml: Organisms per 100 millilitres
 NTU: Nephelometric Turbidity Units

 MPN/100mL: Most Probable Number of organisms per 100 millilitres
 Hercentage

Terms	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " --" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Т	est		Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions						
TRH C6-C9			mg/L	< 0.02		0.02	Pass	
TRH C10-C14			mg/L	< 0.05		0.05	Pass	
TRH C15-C28			mg/L	< 0.1		0.1	Pass	
TRH C29-C36			mg/L	< 0.1		0.1	Pass	
Method Blank							•	
BTEX								
Benzene			mg/L	< 0.001		0.001	Pass	
Toluene			mg/L	< 0.001		0.001	Pass	
Ethylbenzene			mg/L	< 0.001		0.001	Pass	
m&p-Xylenes			mg/L	< 0.002		0.002	Pass	
o-Xylene			mg/L	< 0.001		0.001	Pass	
Xylenes - Total			mg/L	< 0.003		0.003	Pass	
Method Blank			iiig/L	v 0.000		0.000	1 400	
Total Recoverable Hydrocarb	ons - 2013 NFPM Fract	ions						
Naphthalene			mg/L	< 0.01		0.01	Pass	
TRH C6-C10			mg/L	< 0.02		0.02	Pass	
Method Blank			ing/∟	< 0.02		0.02	1 855	
Total Recoverable Hydrocarb	one - 2013 NEPM Eract	ione		L		1		
TRH >C10-C16		10115	mg/L	< 0.05		0.05	Pass	
TRH >C16-C34			U	< 0.03		0.03	Pass	
			mg/L			0.1		
TRH >C34-C40			mg/L	< 0.1		0.1	Pass	
LCS - % Recovery				-				
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions	0/	444		70.400	Dees	
TRH C6-C9			%	111		70-130	Pass	
TRH C10-C14			%	98		70-130	Pass	
LCS - % Recovery								
BTEX								
Benzene			%	85		70-130	Pass	
Toluene			%	86		70-130	Pass	
Ethylbenzene			%	91		70-130	Pass	
m&p-Xylenes			%	95		70-130	Pass	
o-Xylene			%	92		70-130	Pass	
Xylenes - Total			%	94		70-130	Pass	
LCS - % Recovery				1		1		
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions						
Naphthalene			%	89		70-130	Pass	
TRH C6-C10			%	98		70-130	Pass	
LCS - % Recovery				1		1		
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions			ļ			
TRH >C10-C16			%	116		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarb	ons - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	S17-Ap03926	NCP	%	96		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	S17-Ap03926	NCP	%	76		70-130	Pass	
Toluene	S17-Ap03926	NCP	%	74		70-130	Pass	
Ethylbenzene	S17-Ap03926	NCP	%	78	1 1	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
m&p-Xylenes	S17-Ap03926	NCP	%	77			70-130	Pass	
o-Xylene	S17-Ap03926	NCP	%	81			70-130	Pass	
Xylenes - Total	S17-Ap03926	NCP	%	78			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1					
Naphthalene	S17-Ap03926	NCP	%	98			70-130	Pass	
TRH C6-C10	S17-Ap03926	NCP	%	85			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C6-C9	S17-Ap03925	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	
Duplicate									
ВТЕХ				Result 1	Result 2	RPD			
Benzene	S17-Ap03925	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Toluene	S17-Ap03925	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Ethylbenzene	S17-Ap03925	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
m&p-Xylenes	S17-Ap03925	NCP	mg/L	< 0.002	< 0.002	<1	30%	Pass	
o-Xylene	S17-Ap03925	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Xylenes - Total	S17-Ap03925	NCP	mg/L	< 0.003	< 0.003	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
Naphthalene	S17-Ap03925	NCP	mg/L	< 0.01	< 0.01	<1	30%	Pass	
TRH C6-C10	S17-Ap03925	NCP	mg/L	< 0.02	< 0.02	<1	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) paphthalane data results may not be identical. Provided correct sample bandling protocols have

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.

Authorised By

Nibha Vaidya Ryan Hamilton Ryan Hamilton Analytical Services Manager Senior Analyst-Organic (NSW) Senior Analyst-Volatile (NSW)

Glenn Jackson National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofines i mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In or case shall Eurofine is mg be liable for cost, damages or expenses incurred by the client, or any other person or company, resulting than to be reported accespin (i) and and the states of the state is mg be liable for cost, damages or expenses incurred by the client, or any other person or company, resulting than the interpretation given in this report. In or case shall Eurofine is mg be performed on the sages included of the states only to the times tested. Unless, the tests were shall be affected on the state is mg be performed on the sages included of the states only to the times tested.

Melbourne Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Hors State Stat

web : www.eurofins.com.au

Perth 2/91 Leach Highway Kewdale WA 6105 Phone : +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail : EnviroSales@eurofins.com

Sample Receipt Advice

Company name:	GHD Pty Ltd NSW
Contact name: Project name: Project ID: COC number: Turn around time: Date/Time received: Eurofins mgt reference:	Brian Cork CHCC GROUNDWATER MANAGEMENT PLAN 2218605 Not provided 5 Day Apr 4, 2017 9:30 AM 540853

Sample information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \checkmark Sample Temperature of a random sample selected from the batch as recorded by Eurofins | mgt Sample Receipt : 21 degrees Celsius.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- \times Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Nibha Vaidya on Phone : +61 (2) 9900 8400 or by e.mail: NibhaVaidya@eurofins.com

Results will be delivered electronically via e.mail to Brian Cork - brian.cork@ghd.com.

38 Years of Environmental Analysis & Experience

1	eu	rofin	S mg	t	Ph	it F3 - 6 one: +6	12 9900	F. 16 Mar			ove					Pho	t 1-21 : one: +6	17 390	ood P 2 460	lace, M 0	urrarie rk.com.a	au				Pho	ngston To ne: +613 i	8564 5000	. Oakleigh	Fax; +(613 8564 509	90	
01.15											СН	AIN	OF	CL	IST	OD	YR	EC	OR	D												2	
CLIE	NT DETAILS				Canta	ct Name						_	_	_			-		_				_					Pag	e	-	of	1. 1.	
Com	Pany Name	GHD			_			_	ian Co						-	Pu	rchas	a Orde	r								COC N	umber :			1		
Offic	e Address	Coffs Ha			Projec	t Manag	er :	Br	ian Co	ork		23				PR	OJEC	T Num	ber	22	218605	5					Eurofin	is mgt c	juote ID :	i	#1018		
		230 Harbour D	Drive 2450		Email	for resu	lts :	br	<u>ian.c</u>	ork@	ghd.	com				PR	OJEC	T Nam	e	С	HCC C	Ground	dwater	Manage	ment Pla	an	Data of	utput form	mat:				-
									_		,	Analyte	5	-				1.17	-	_	T		_	So	me comm	on holdin	g times (with corr	ect prese	rvatic	on).		
Spec	ial Directions &	& Comments :		_		TT		TT						T			T	Г	-		+-			-	ŀ	or further i	nformatio	1 contact	the lab				
																		1				TEV .		Waters		T			_	Soi	15		
																				· .			MAH, VO	C Iols, Pesti	sides	14 days	T	EX, MAH,		<u> </u>			14 days
1																			Í			Heavy M		1015, 1.620	cide5	7 days 6 month			Phenols, Pr	esticie	Jes		14 days
					1											1						Vercury				28 days		avy Metals rcury, CrV					6 month
					J																N	Aicrobie	ological ti	esting		24 hours	-	robiologic					28 d 72 hours
					R R																6	OD, N	itrate, Nil	rite, Total	N	2 days	Ani		an reaning				28 days
																					5	Solids -	TSS, TD	S etc		7 days	SPO	DCAS, pH	I Field and	FOX	, CrS		24 hours
Eurofi	ns mgt Di water	batch number:			(TRH & BTEX)																F	errous	iron			7 days	ASI	P, TCLP	_				7 days
					Ē													11			Cant	ainers	_		-	_	_		<u> </u>	-			-
	San	mple ID	Date	Matrix	8																11	_	250P	125P	1LA	40ml via	1 125mL	A Jar		-	Sample	comme	nts:
	River 1		29/03/2017	w	X												1		\neg	+	1	<u> </u>	1	1201		2		1 50		+		_	
_	River 2		29/03/2017		X																		1			2	-	-		-			
3																									1					\neg			
4						╉╌┼	_	┢╌┟┈	+	_	-			$ \downarrow \downarrow$				\square			\perp												
5 6			<u> </u> i			+				_	-		+	+	\rightarrow				\rightarrow	\rightarrow	+	_			L		Ļ	\perp					
7			1		+	┼─┼			+ +		+		+	╇╌╴┨					+		+	-											
8			1		<u> </u>	┼╶┼		╞╶┼─	╈				+	╞╴┦			+			+	+									\rightarrow			
9						+ +	+		+		1		-+	+				\vdash	-+		+							+		\rightarrow			
10						+	1-		+		-		+	+	-	-	+	┝╼╋	+		+					<u> </u>	+	+		+			
11													\uparrow	+			+		+	+	1					+	1	+	-+	+			
12					<u> </u>																						1	+		+			
13							_															T											
14 15					ł	+ $+$			+					\vdash	\rightarrow	_																	
16			<u> </u>		· ·	╋			+	_	+			+	\rightarrow	+-			-+		+	_					ļ	+	_	$ \rightarrow $			
17						++		\vdash	┼┼		+	-	+	┥┫					+			\rightarrow						+		\rightarrow			
						<u>ال</u>	aborato	rv Staff	<u> </u>					<u> </u>	Turn a	around	time									C PL 2013					emperature	on ardu	ent:
Relinq	ulshed By:	Sam Turbi	[]	Receiv	ed By:	-															-				meinöd C	f Shipmer	1(-	_			
	· · · · · · · · · · · · · · · · · · ·				bm	1	au	ule 2A	~				-		_			_				Cou	rier								21.	Oo	2
Date &	Time:: 3/	4/17			Time:	0	0		0000			1 DAY	ц ,	2 DAY	Ļ	3 D/	AY [J				Han	d Delive	red						R	leport numbe	er:	_
		T11/	_	4		7	:3	2A	M			5 DAY		10.04	, D	Othe						Post	tal							1 C	5408	25	2
Signat		<i>`</i>	•	Signat	118: 12-	n	6	-				- orar	4 0	10 UA		UI	-1.				Cou	urler Co	onsignm	ient # 👘						C	5-00	00	5

QS3009_R0 Intrue Date: 25 February 2013 Page 1 of 1

Page 1 of 1

Appendix E – Field Sheets

			GROU	NDWATER PURGING AND SAMPLING RECORD
	PROJECT NO. 2218605 PROJECT NAME Glound Waki CLIENT CHCC	managarent plan	BOREHOLE NO. GPS CO-ORDINATES (if <i>Applicable</i>)	MW4B
	SITE (0/AMba		LOGGED BY PAGE	Sam Tuybili 1 of 1
	FIELD MEASUREMENTS FOR PURGIN	$\langle c \rangle$		C1/11-
	DEPTH TO WATER BEFORE PURGING (FRO		DATE	5/4/17
	DEPTH OF BORE (FROM TOC)	1000	PURGE METHOD	low flow
	THICKNESS OF WATER COLUMN	4.42	CASING TYPE	<u>pvc-peri</u>
	DEPTH TO WATER DURING PURGING (FRO		GROUNDWATER ELE	VATION
	DEPTH TO WATER DURING PURGING (FRO		Pip:1	13. Spp- No Odon/
	BORE PURGING		<u>, , , , , , , , , , , , , , , , , , , </u>	an an an an an an an an an an an an an a
Swl(m)	TIME CUM. TEMP	pH E.COND	DO EH F	PUMP COMMENTS (SHEEN, COLOUR,
5.64	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{S.46}{S.51} \frac{(\mu s/cm)}{121.8}$ $\frac{S.46}{S.86} \frac{121.8}{156}$	$\frac{\binom{(mg/L)}{13}}{0.97} = \frac{(mV)}{59.91} = \frac{1}{100}$	TURBID, SED, ODOUR)
	423 5 42 4:27 6 21.1	5. 93 167.3	0.88 -84.2 1 0.86 -88.5	12 1: 2
	WELL SAMPLING			
	SAMPLING DATE	5/4/17	SAMPLING BY	San turbill
	SAMPLING TIME SAMPLING METHOD/EQUIPMENT	4.35 low flow, peraste	WATER METER CALIBRATE	and the stand of t
	SAMPLE COLLECTION RECORD		· · · · · · · · · · · · · · · · · · ·	
	TIME CUM. TEMP $4^{\cdot}25$ 9 $2^{\cdot}6$	pH E.COND (115/cm) 6.23 233.3		PUMP COMMENTS (SHEEN, COLOUR, RATE TURBID, SED, ODDUR)
	sample NO. NO. OF CONTA			Clear
			an ann an an an an an an an an an an an	
	FIELD SUPERVISOR	1999,000,000	CHECKED (SIGN & DAT	'E)
5.66	v		1.84 -91.4	
	4:359 21.0 6	1233	51 - 18:0	

GHD				GROUND	VATER PURGING SAMPLING REC	
PROJECT NO. PROJECT NAME CLIENT SITE	221860 Gloundwak CHCC COLAMbq		BOREHOL GPS CO-O (if Applicab LOGGED I PAGE	RDINATES	an Iu/bill of 1	
DEPTH TO WATER DEPTH OF BORE (F THICKNESS OF WA DEPTH TO WATER DEPTH TO WATER		омтос) 0.76 <u>2.11</u> <u>1.36</u> омтос) 0.7	CASI	SE METHOD NG TYPE JNDWATER ELEVATION	PVC	peri
	$\begin{array}{c} \text{CUM.} & \text{TEMP} \\ \text{OL}(L) & (^{\circ}\text{C}) \\ \hline 22.2 \\ 22.2 $	$\begin{array}{ccc} pH & E.CONI \\ \hline \\ & & \\ & \\ \hline \\ \\ & \\ \hline \\ \\ & \\ \hline \\ \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline$	8 1(mg/L) 5 1.74 - 6 1.71 - 7 1.67 -	EH PUMP (mv) RATE 3/4 17.6 $3/43/43/43/43/43/43/43/43/43/43/43/43/43/4$	COMMENTS (SHEEN, CO TURBID, SED, ODOUR) C R C R C R C R C R C R C R C R C R C R	LOUR,
WELL SAMPLING SAMPLING DATE SAMPLING TIME SAMPLING METI	E	5/4/17 2.01 low flow, per			- ()	16:11 17
TIME	CTION RECORD CUM. TEMP OL (L) (°C) 0 ZZZ	pH E.CON S.OS (115/CM		EH PUMP (mV) RATE	COMMENTS (SHEEN, CO TURBID, SED, ODDUR)	DLOUR,
SAMPLE NO.	NO. OF CONT	AINERS PRESE		CATE	comments Clear	
FIELD SUPERVI	SOR		CHECKE	D (SIGN & DATE)		
- 2:01 1	5 222	5.05 88	-3 1.52	- 57.0 -	(8.76m)	ala an

· . «· ,						GRC		ATER PURG SAMPLING	
•	PROJECT NO.	221860	S		BOR	EHOLE NO.	\mathbb{M}	W12	
	PROJECT NAME	610und work	1 Monao	ment plan	GPS	CO-ORDINATES			·
	CLIENT	CHCC			(if Ap	oplicable)			
	SITE	COIAMI	20		LOG	GED BY	<u></u>	in Jurbi	<u>[[</u>
					PAG	E	1	of	1
	FIELD MEASUREM		Ŧ	3.14	***	DATE		5/4/17	
	DEPTH OF BORE (FR	DM TOC)		6.51	······································	PURGE METHOD		low flor	N-Pel.
	THICKNESS OF WATE		******	5.37	***	CASING TYPE		<u> </u>	andi kadurushi kasulasi cayar ayay 400
	DEPTH TO WATER DU			3.10		GROUNDWATER S	ELEVATION		
	DEPTH TO WATER DU		·	3.16 3.16		PID	-37	NO S Bepalignt	odouv
<i>C</i>	BORE PURGING								
Sw (m)	TIME CUI	•	pН	E.COND	DO	EH	PUMP	COMMENTS (SHE	
3.13	245 D	^(L) (°°°), 24	6.35	(µs/cm)	(mg/L)	(mV) - 71.3	rate 3/4		JR) /
3.16.	Les S 3 Louise	23.7	6.36	294.8	0.7	5-88-5	» 3/4	<u>مر</u> م مر	ê A
3.16	3.00 4	23.7	635	214.0	0.72	<u>-88.8</u>	» 3/4		t e
3-16	<u>s:10</u> 7	23.7	6.37	242.3	0.7.	3 - 13.3	3/4	1. <	/
	WELL SAMPLING SAMPLING DATE	11	5/4/	17	SAMPL			_ /	Turbill
	SAMPLING TIME	D/EQUIPMENT	<u>5.16</u> low fl	or peras		R METER CALIBRA		DATE) <u>Y S/</u>	4117
¥.	SAMPLE COLLECT	TION RECORD						***************************************	
Ar		_	рн <u>6-3</u> 7	E.COND (JIS/CM) 2 1.4	DO (mg/L) (5 ·)		PUMP RATE	COMMENTS (SHI TURBID, SED, ODO	
्रे • 	sample no. MW12 DVp2	NO. OF CONT	AINERS	PRESERVATI		DUPLICATE dvp2 mw12	• ••••••••••••••••••••••••••••••••••••	COMMENTS	
	and and the state of the second second second second second second second second second second second second s		n. 1994. (1999) - Anno antonio a	annan bib / . Wida Adri Sahabaran Jajaa (baa					
	FIELD SUPERVISO)R			СН	ECKED (SIGN & D	DATE)		
(Transaction	0223.6 3.16pm	6.37	S diaman	.4 0.4	72.	- 73 - 5			

PROJECT NO. PROJECT NAME CLIENT	221860 Gioundhat CHCC	el Manago			OLE NO. D-ORDINATES sable)		SAMPLIN	
SITE		<u>C6101</u>	nba	LOGGE PAGE	D BY	1	<u>am 101</u> of	
FIELD MEASUREM DEPTH TO WATER E DEPTH OF BORE (FF THICKNESS OF WAT DEPTH TO WATER E DEPTH TO WATER E DEPTH TO WATER A	EFORE PURGING (FI ROM TOC) ER COLUMN WRING PURGING (FF WRING PURGING (FF		3. 3. 13 5.12 .08	18 CA	NRGE METHOD SING TYPE ROUNDWATER		<u>puc</u>	ow-p
BORE PURGING	IM. TEMP	pН	E.COND	DO	EH	PUMP		
11:07 11:61 11:21 11:28 4		S-73 S-73 S-78 602	$\frac{253}{254}$ $\frac{260.4}{279.3}$	(mg/L) (.25 1.16 1.24 (.2.9	(mV) - <u>58</u> - <u>107</u> - <u>128</u> .0	RATE 1/2 1/2 1/2	COMMENTS (TURBID, SED, C Clear Clear Clear Clear	DOUR)
WELL SAMPLING SAMPLING DATE SAMPLING TIME SAMPLING METHO	DD/EQUIPMENT	5/4/ 11:52 Iow f		THAT	TER CALIBR			14/17
SAMPLE COLLEC								
	им. темр (L) (°с) <u>21.7</u>	рн 6.14	E.COND (µs/cm) 291.9	DO (mg/L) (.57	EH (mV) - 22-2	PUMP RATE	TURBID, SED, O	DOUR)
SAMPLE NO. MW6 dvp1	NO. OF CON	TAINERS	PRESERVAT		PLICATE 2 W6	<u> </u>	COMMENT Leav Leav	TS
FIELD SUPERVIS	DR			CHECK	ED (SIGN & E	DATE)		al an ar an an an an an an an an an an an an an

Ŋ

CHD	GRO	UNDWATER PURGING AND SAMPLING RECORD
PROJECT NO. 2218605	BOREHOLE NO.	MW14
PROJECT NAME Gloundwall Managnent D	GPS CO-ORDINATES	аниман билиний аболгайнаа били нээлээн элэгээн авсан алаан алаан алаан алаан алаан алаан алаан алаан алаан алаа
CLIENT CHCC	(if Applicable)	
site Coramba	LOGGED BY	Sam Turbill
	PAGE	1 of 1
FIELD MEASUREMENTS FOR PURGING		
DEPTH TO WATER BEFORE PURGING (FROM TOC)	54 DATE	614/17
DEPTH OF BORE (FROM TOC)	26 PURGE METHOD	bailer
THICKNESS OF WATER COLUMN 4.7	CASING TYPE	PVC-
DEPTH TO WATER DURING PURGING (FROM TOC)	.SS GROUNDWATER EI	LEVATION
DEPTH TO WATER DURING PURGING (FROM TOC)	2:55 Dra 2	No Steen
DEPTH TO WATER AFTER PURGING (FROM TOC)	12.55 PLD:31	+ moderate odour
BORE PURGING		
TIME CUM. TEMP pH E.COM	ID DO EH	PUMP COMMENTS (SHEEN, COLOUR,
VOL(L) (°C) (μs/cr	n) (mg/L) (mV)	RATE TURBID, SED, ODOUR)
21 20	กรุกษณฑรายการ ระยายระสาขกรรมการสาขารสาขาง เมษา	
46 30	การสารการการการการการการการการการการการการกา	
11:50 Samle	กระบบสายเห็น กระบบสายเห็น กระบบสายเห็น กระบบสายเห็น กระบบสายเห็น กระบบสายเห็น กระบบสายเห็น กระบบสาย ก	\$ light Shen mode
i sold i full		Slight Sheen mode
WELL SAMPLING		
SAMPLING DATE 674(17	SAMPLING BY	Sam Jurbill
SAMPLING TIME 11.50	WATER METER CALIBRA	TED Y/N (DATE)
SAMPLING METHOD/EQUIPMENT BOULE	n han an general an an an an an an an an an an an an an	
SAMPLE COLLECTION RECORD	***	/
TIME CUM. TEMP pH E.COM	DO DO EH	PUMP COMMENTS (SHEEN, COLOUR,
1.50 36 (jus/cr	n) (mg/L) (mV)	RATE TURBID, SED, ODOUR)
	ті мірт тапа т	light Sleen Ddour
SAMPLE NO. NO. OF CONTAINERS PRESE	RVATIVE DUPLICATE	liant Sheen moderate Odow
0	Į	inght steery moderate value
ан жай на наралалардын на арманият жан. — за канарандан чаран чараларда карал (каралардан жана канаралардан жан	ann an an an an an an an an an an an an	
FIELD SUPERVISOR	CHECKED (SIGN & DA	ATE)

* pulged 30 litues

GHD						
PROJECT NO.	2710(5				GROUN	DWATER PURGING SAMPLING REC
PROJECT NAME CLIENT SITE	2218605 Groundwater M CHCC COYAMBA	nanagoent p	lan gp (if A	DREHOLE NO S CO-ORDIN Applicable) GGED BY GE	*****	Mag Sam Jurbill
FIELD MEASUREM	ENTS FOR PURGING					of 1
DEPTH TO WATER BE DEPTH OF BORE (FRO THICKNESS OF WATER DEPTH TO WATER DUP DEPTH TO WATER DUP	FORE PURGING (FROM TOC DM TOC)	6.32 2.1 4.18	7	PID		18199 1929 1939 1939
BORE PURGING					-NO S	leen
TIME CUM. 4.24 $04:30$ $1.54:38$ $34:48$ $44:54$ 5	19:9 4.99	E.COND $(\mu s/cm)$ (38.6) 7139.6 7139 140 140 140	DO (mg/L) 3.3/ 3.32 3.52 3.43 3.45	EH (mV) 65.4 43.0 28.7 24.2 24.2 24.2	PUMP RATE 13/4 11/1/ 11/1/	COMMENTS (SHEEN, COLOU TURBID, SED, ODOUR) Clear Clear Clear Clear
WELL SAMPLING SAMPLING DATE SAMPLING TIME SAMPLING METHOD/E0	6/4 4.5 QUIPMENT 10w f	-117 54 pm low, peras	SAMPLING WATER MI Helt:c pur	G BY ETER CALIBI	RATED (YN (and and a state of the state of
SAMPLE COLLECTION	RECORD					
TIME CUM. VOL (L) 4.54 5	темр _р н (°с) 19.8 4.95	E.COND (jus/cm) 140.5	DO (mg/L) 3-45	ЕН (mV) 22 •	PUMP RATE	COMMENTS (SHEEN, COLOUR, TURBID, SED, ODOUR)
SAMPLE NO. N	O. OF CONTAINERS	PRESERVATIN	/E DUP		-	COMMENTS
FIELD SUPERVISOR		an an an an an an an an an an an an an a		¹⁷ - and in the bolis of stars of stars		

PROJECT NO.	221860			BOREHO	DLE NO.		SAMPLING RECO
PROJECT NAME	Groundwa		aggert pl	an GPS CO.	ORDINATES		na in Polyna mar an ann an an ann an ann ann an ann an
CLIENT	CHCC		-)	(if Applica	able)	and the second particular datasets	an ku kaning ta kara ta na panan ta tangan kan ka ka kanang sa ka kanang sa ka kanang sa ka
SITE	Covambo	λ		LOGGED		Sa	m Aurbill
UTL .			a na ann an tao ann an ann ann ann ann ann ann ann an	PAGE		1	of 1
	IENTS FOR PURGIN	IG	12 61				11/112
DEPTH TO WATER B	EFORE PURGING (FRO	ОМ ТОС)	13.81	DA	ТЕ		014/1/
DEPTH OF BORE (FF	ROM TOC)		4.78	PU	RGE METHOD		low flow-
THICKNESS OF WAT	ER COLUMN		0.47	CA	SING TYPE		<u> </u>
DEPTH TO WATER D	OURING PURGING (FRO	ом тос)	4.93	GR	OUNDWATER	ELEVATION	
DEPTH TO WATER D	OURING PURGING (FRO	омтос)	4.53	Company of the second se	PIH=	D	,
DEPTH TO WATER A	AFTER PURGING (FRO	M TOC)	4.62		PSH-	1	ow.
					1	No ste	en
BORE PURGING							
	JM. TEMP	pH	E.COND	DO	EH	PUMP	COMMENTS (SHEEN, COLO TURBID, SED, ODOUR)
3:06 0	L(L) (°C) Zo	4.69	(µs/cm) 130-8	(mg/L) 4.13	(mV) 103.5	1/2	Clear
3.17	20.2	4.69	1373	3.21	67.2	1/2	1
3:31 -	2 20.2	4.71	138.0	3.51	46.6	1/2	
	3 20.1	4.72	138.3	3.31	241	1/2	
	20,1		130.3	~	21.1		anay kaominina dia mandri kaominina dia kaominina dia mandri kaominina dia mandri kaominina dia mandri kaominin
WELL SAMPLING	•	6/1.1	17				Sam Tur
SAMPLING DATE		0141		SAMPLING			61111-
SAMPLING TIME		5.45					DATE) <u>4 31411</u>
SAMPLING METH	IOD/EQUIPMENT	low t	low, peras	Heltic pur	np,Inte	MIORE	
SAMPLE COLLEG	CTION RECORD						
	UM. TEMP	pН	E.COND	DO	EH	PUMP	COMMENTS (SHEEN, COL
	$\frac{1}{20.1}$ (°C)	4.73	(jis/cm) 138.3	(mg/L) 3.31	(mV) 341	RATE	TURBID, SED, ODOUR)
5113 3	20.1	<u> </u>	1-0.3	~ >1	- + 1	an an Andrea and Andreas and Analysis and Program and a	
SAMPLE NO.	NO. OF CONT	AINERS	PRESERVAT	IVE DU	PLICATE	hat	COMMENTS
mw2	6		Y		N	hot	recharging
RIP OR WAR IN THE COMPANY RECEIPTING OF	Anna - 1	Normal T Constantial Constants	/			angiatanistist is addressing	tar transmission and a state of tables. Note that the state of the descent state of the state of the state of t
			an an an an an an an an an an an an an a		ang ang t		······································
And a construction of the property of the property of the second s	n an and an and a second s						

	GROU	NDWATER PURGING AND SAMPLING RECORD
PROJECT NO. 2218605	BOREHOLE NO.	MWII
PROJECT NAME Groundwater managment pl	GPS CO-ORDINATES	\$11,11,11,11,11,11,11,11,11,11,11,11,11,
CLIENT CHCC	(if Applicable)	
site Colamba	LOGGED BY	Sam Turbill
	PAGE	1 of 1
FIELD MEASUREMENTS FOR PURGING		/1 .
DEPTH TO WATER BEFORE PURGING (FROM TOC)	DATE	6/4/17
DEPTH OF BORE (FROM TOC) 5.58	PURGE METHOD	low flow-per:
THICKNESS OF WATER COLUMN 3.39	CASING TYPE	pvc
DEPTH TO WATER DURING PURGING (FROM TOC)	GROUNDWATER ELE	EVATION
DEPTH TO WATER DURING PURGING (FROM TOC)	PID:0	
DEPTH TO WATER AFTER PURGING (FROM TOC) 2019	PSH - ho	
BORE PURGING		
TIME CUM. TEMP pH E.COND	DO EH I	PUMP COMMENTS (SHEEN, COLOUR,
2.30 21.4 21.4 6.32 $3.52.4$	$(mg/L) = (m^{V}) = 0.96 - 95$	RATE TURBID, SED, ODOUR) Cl-C Cl√
12:37 Z 21.4 6.44 336.8	0.64 - 173.	Cleal
12:46 4 21.3 6.47 335.8	0.59 - 196.4	Clear
	2.55 -204.7	Clear
12:58 7.5 ZIZ 6.46 335.3 (2.54 -209	1
WELL SAMPLING		
SAMPLING DATE 6/4/17	SAMPLING BY	Sam Turbill
SAMPLING TIME 12.58	VATER METER CALIBRAT	ED Y/N (DATE) <u>4 5/4/17</u>
SAMPLING METHOD/EQUIPMENT 10W Flow, peras	eltic pump, Int	er probe
SAMPLE COLLECTION RECORD		
TIME CUM. TEMP pH E.COND	DO EH	PUMP COMMENTS (SHEEN, COLOUR.
2.58 7.5 Z1.2 6.46 335.3	(mg/L) (mV)	RATE TURBID, SED, ODOUR)
12.58 7.5 Z1.2 6.46 335.3	0.54 -209	Cleav
SAMPLE NO. NO. OF CONTAINERS PRESERVATIVE	DUPLICATE	CLEAT
	анын сарагалан алан алан алан алан алан алан ала	
FIELD SUPERVISOR	CHECKED (SIGN & DA	TE)

PROJECT N PROJECT N CLIENT SITE		218605 Indwaki HCC Drambo	Managi	ment pla	BOREHO GPS CO (if Applic LOGGEI PAGE	-ORDINATE able)	S	wis 2m Turb of	<u>; </u> 1
DEPTH TO W DEPTH OF BO THICKNESS O DEPTH TO W DEPTH TO W	SURE MENTS F ATER BEFORE P DRE (F ROM TOC DF WATER COLL ATER DURING P ATER DURING P ATER AFTER PU	URGING (FROM) JMN URGING (FROM URGING (FROM	1TOC)	3.99 7.80 3.81 3.99 4.0 3.99	CA	RGE METHON SING TYPE COUNDWATER DID = C DID = C	D RELEVATION) Vo Odou Vo Slee	pvc /	-peij
BORE PURC TIME 11:48 12:60 2:06 12:10	Sing CUM. VOL(L) O 2 $3 \cdot S$ $5 \cdot S$ 7	темр (°с) [9.9 [9.5 [9.5 [9.5 [9.5]	рН 2-08 2.88 4.91 4.93 4.93	E.COND (115/cm) (13-3) 144-8 156-3 156-3 150-6 160-1	DO (105 2.72 3.31 3.60 3.64	EH (mV) 84 5.7 3.0 -2.0 -6.2	PUMP RATE 3/4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	COMMENTS (SHEEN TURBID, SED, ODOUR)	
WELL SAM SAMPLING SAMPLING SAMPLING	DATE	IPMENT	6/4/ 2.10 Iowfl	17 ow, pelo	SAMPLING WATER ME	TER CALIB	rated Y/N (I	Sam Ti Date) <u>y 5/4/</u>	ubill 17
SAMPLE CO TIME 2.0		TEMP	рн 4.95	E.COND (µs/cm) 1 6 3 . 4	DO (mg/L) 3-70	EH (mV)	PUMP RATE	COMMENTS (SHEEN TURBID, SED, ODOUR)
SAMPLE MW		D. OF CONTAI	NERS	PRESERVAT	IVE DUF	PLICATE	101	COMMENTS bid grey	<u> </u>
49.04.04.04.04.04.04.04.04.04.04.04.04.04.	ERVISOR		1100 d. 016 by an annual s		CHECK	ED (SIGN &	DATE)		

PROJECT NO.	2218605 Toundwate		ynent pla	-	IOLE NO. O-ORDINATE		W 20	
CLIENT	HCC		1995-1997 - 1997	(if Appli	icable)			
SITE	-Orambi	λ		LOGGE	D BY	20	m turbil	1
M				PAGE		1	of	1
FIELD MEASUREMENT			2 -0				11+11-	
DEPTH TO WATER BEFO		OMTOC)	2.59m	D	ATE		614117	A
DEPTH OF BORE (FROM			2.80	P	URGE METHOD)	10W flow	-peri
THICKNESS OF WATER C	OLUMN		3.21	C.	ASING TYPE		pvc	
DEPTH TO WATER DURIN			2.68	G	ROUNDWATER	ELEVATION		
DEPTH TO WATER DURIN			2.68		bid: 0			
DEPTH TO WATER AFTER	R PURGING (FRO	MTOC)	2.65		psh: no	sheen	M	
BORE PURGING								
TIME CUM.	TEMP	pН	E.COND	DO	EH	PUMP	COMMENTS (SHE	EN, COLOU
9.09 VOL(L)	(°C)	5 71	(µs/cm) 32.3	(mg/L)	(mV)	rate 1/2	TURBID, SED, ODOL	IR)
9.17 7	21.7	526	1771	0.72	274	1/2	Clear	
4.25.9	21.8	5.73	21.0	0.86	45.6	1/2		
1:30 5	21.9	5.27	121.8	0.90	50	1/2	q	11
9.37 7	21.8	5.22	119.9	1.08	- 13.2	1/2	and a subject of the set of the s	
WELL SAMPLING		11,	11-				C	~ 1
SAMPLING DATE		6141	/ [/	SAMPLING	3 BY		Sam	Turk
SAMPLING TIME		4.42			ETER CALIBR		date) $Y S/$	4/17
SAMPLING METHOD/E	EQUIPMENT	low fl	on perest	cHic PUM	1/Interp	liobe		
SAMPLE COLLECTION	NRECORD		<u> </u>					
TIME , CUM.	TEMP	pН	E.COND	DO	EH	PUMP	COMMENTS (SHE	EN, COLOU
9.47 VOL(L)	(°C)	5 72	(µs/cm)	(mg/L)	(mV)	RATE	TURBID, SED, ODO	JR)
1142 0	21.8	1.03	118.4	1.16	-16.7	******	Cicou	
SAMPLE NO. MWZO	NO. OF CONT	AINERS	PRESERVAT	IVE DU	PLICATE		COMMENTS	
111020	5			••••••••••••••••••••••••••••••••••••••	(V	*		1964 (S.1.999) (P.1.97) (S.1.99)
Barriller, Walt 19, 1990 (Scholmen and Scholmen a	1970 maa haannaa kasaanna waxaa maanaanaa ah ah a		**************************************		and descent of a second second second second second second second second second second second second second se	alat (again) (good) of an and a second	анын алартан (ал 1996, 967, 969) — 96 (ар 1996) Т	
Alexandrative for the formation group of parts are a space or a space of the space		ст так А ^л ХАХИСАН МАНККА Д К Донуц Ц т	ana pangangan ang sang sang sang sang sang sa	аний самонала. 	ning anan separa ta katala katapat pang	- 41 - 51 - 51 - 51 - 51 - 51 - 51 - 51	a	
FIELD SUPERVISOR				CHEC	KED (SIGN &	DATE)	a - an to the test of the anti-	الفريقي ومعاولين والمعارض والمعارفين

	GHD					GRO	DUNDW	ATER PURGING SAMPLING RE	
	PROJECT NO. PROJECT NAME CLIENT	221860 Ground Ward CHCC)S ZKI Manu	ignent plan	GPS C	HOLE NO. :O-ORDINATES <i>licable</i>)		WI8	······································
	SITE	Colomb	<u>A</u>		LOGG PAGE	ED BY	<u>50</u> <u>1</u>	of	1
	FIELD MEASUREM DEPTH TO WATER BE DEPTH OF BORE (FRO THICKNESS OF WATE DEPTH TO WATER DO DEPTH TO WATER DO DEPTH TO WATER AF	efore purging (Fr DM Toc) Er Column Jring Purging (Fr Jring Purging (Fr	омтос) омтос) омтос)	4.58 8.93 4.35 4.59 4.59 4.59 4.59		DATE PURGE METHOD CASING TYPE GROUNDWATER	ELEVATION	5/4/17 low flow - DVC	pe1.
<u>SWI</u> (4.59) (4.59) (4.59)	BORE PURGING TIME CUI 10:02 1 10:06 2 0:11 3 0:14 4		рн <u>6.43</u> <u>6.43</u> <u>6.43</u> <u>6.42</u> <u>6.42</u>	E.COND (115/cm) 320.0 3092 304.6 301.7	DO (mg/l) (·SI (·SI (·SI (·SI	EH (mV) - <u>80.5</u> -101.3 -073 -073	PUMP RATE 3/4 3/4 3/4 3/4	COMMENTS (SHEEN, C TURBID, SED, ODOUR) Clear Clear Clear Clear Clear	OLOUR,
	WELL SAMPLING SAMPLING DATE SAMPLING TIME SAMPLING METHC	D/EQUIPMENT	10.14	17 10w, perost		ETER CALIBR	480		15:11 17
	SAMPLE COLLECT TIME CUI VOL 10.14	M. TEMP	рн <u>6.42</u>	E.COND (jis/cm) 301-7	DO (mg/L) ∫ -	ен (mV) - <u>109</u> . ј	PUMP RATE	COMMENTS (SHEEN, C TURBID, SED, ODDUR) C [PA /]	OLOUR,
	SAMPLE NO. MW18	NO. OF CONT	AINERS	PRESERVATIN	/E DL	JPLICATE		COMMENTS	
	FIELD SUPERVISO	PR			CHEC	:KED (SIGN & [DATE)		

.

.

GHD

Level 3 GHD Tower 24 Honeysuckle Drive Newcastle NSW 2300 PO Box 5403 Hunter Region Mail Centre NSW 2310 T: (02) 4979 9999 F: (02) 4979 9988 E: ntlmail@ghd.com

© GHD 2017

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

https://projects.ghd.com/OC/Newcastle/chcccorambagroundwat/Delivery/Documents/2218605_REP _A_GHD_CHCC Coramba Groundwater Monitoring Report.docx

Document Status

Revision	Author	Reviewer		Approved for Issue				
		Name	Signature	Name	Signature	Date		
0	S. Martin/ B. Cork	I. Gregson	615	I. Gregson	615	10/08/2017		
			10					

www.ghd.com

